BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26144265)

  • 1. The impact of binding thermodynamics on medicinal chemistry optimizations.
    Ferenczy GG; Keserű GM
    Future Med Chem; 2015; 7(10):1285-303. PubMed ID: 26144265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic profiling for fragment-based lead discovery and optimization.
    Ferenczy GG; Keserű GM
    Expert Opin Drug Discov; 2020 Jan; 15(1):117-129. PubMed ID: 31741402
    [No Abstract]   [Full Text] [Related]  

  • 3. Thermodynamics guided lead discovery and optimization.
    Ferenczy GG; Keserũ GM
    Drug Discov Today; 2010 Nov; 15(21-22):919-32. PubMed ID: 20801227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding thermodynamics discriminates fragments from druglike compounds: a thermodynamic description of fragment-based drug discovery.
    Williams G; Ferenczy GG; Ulander J; Keserű GM
    Drug Discov Today; 2017 Apr; 22(4):681-689. PubMed ID: 27916639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety.
    Meanwell NA
    Chem Res Toxicol; 2011 Sep; 24(9):1420-56. PubMed ID: 21790149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A look at ligand binding thermodynamics in drug discovery.
    Claveria-Gimeno R; Vega S; Abian O; Velazquez-Campoy A
    Expert Opin Drug Discov; 2017 Apr; 12(4):363-377. PubMed ID: 28276703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-based ligand design of novel potent inhibitors of tankyrases.
    Larsson EA; Jansson A; Ng FM; Then SW; Panicker R; Liu B; Sangthongpitag K; Pendharkar V; Tai SJ; Hill J; Dan C; Ho SY; Cheong WW; Poulsen A; Blanchard S; Lin GR; Alam J; Keller TH; Nordlund P
    J Med Chem; 2013 Jun; 56(11):4497-508. PubMed ID: 23672613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Protocol to Use Comparative Binding Energy Analysis to Estimate Drug-Target Residence Time.
    Ganotra GK; Nunes-Alves A; Wade RC
    Methods Mol Biol; 2021; 2266():171-186. PubMed ID: 33759127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying thermodynamic profiling in lead finding and optimization.
    Klebe G
    Nat Rev Drug Discov; 2015 Feb; 14(2):95-110. PubMed ID: 25614222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How well can fragments explore accessed chemical space? A case study from heat shock protein 90.
    Roughley SD; Hubbard RE
    J Med Chem; 2011 Jun; 54(12):3989-4005. PubMed ID: 21561141
    [No Abstract]   [Full Text] [Related]  

  • 11. Lead generation of heat shock protein 90 inhibitors by a combination of fragment-based approach, virtual screening, and structure-based drug design.
    Miura T; Fukami TA; Hasegawa K; Ono N; Suda A; Shindo H; Yoon DO; Kim SJ; Na YJ; Aoki Y; Shimma N; Tsukuda T; Shiratori Y
    Bioorg Med Chem Lett; 2011 Oct; 21(19):5778-83. PubMed ID: 21875802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors.
    Lange JH; Venhorst J; van Dongen MJ; Frankena J; Bassissi F; de Bruin NM; den Besten C; de Beer SB; Oostenbrink C; Markova N; Kruse CG
    Eur J Med Chem; 2011 Oct; 46(10):4808-19. PubMed ID: 21880399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitor binding to Hsp90: a review of thermodynamic, kinetic, enzymatic, and cellular assays.
    Petrikaite V; Matulis D
    Curr Protein Pept Sci; 2014 May; 15(3):256-82. PubMed ID: 24694365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How are fragments optimized? A retrospective analysis of 145 fragment optimizations.
    Ferenczy GG; Keserű GM
    J Med Chem; 2013 Mar; 56(6):2478-86. PubMed ID: 23437770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enthalpic basis of additivity in biphenyl hydroxamic acid ligands for stromelysin-1.
    Wilfong EM; Du Y; Toone EJ
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6521-4. PubMed ID: 22985855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design Principles for Fragment Libraries: Maximizing the Value of Learnings from Pharma Fragment-Based Drug Discovery (FBDD) Programs for Use in Academia.
    Keserű GM; Erlanson DA; Ferenczy GG; Hann MM; Murray CW; Pickett SD
    J Med Chem; 2016 Sep; 59(18):8189-206. PubMed ID: 27124799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies.
    Deganutti G; Moro S
    Future Med Chem; 2017 Apr; 9(5):507-523. PubMed ID: 28362130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additivity or cooperativity: which model can predict the influence of simultaneous incorporation of two or more functionalities in a ligand molecule?
    Nasief NN; Hangauer D
    Eur J Med Chem; 2015 Jan; 90():897-915. PubMed ID: 25559080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic undocking and the quasi-bound state as tools for drug discovery.
    Ruiz-Carmona S; Schmidtke P; Luque FJ; Baker L; Matassova N; Davis B; Roughley S; Murray J; Hubbard R; Barril X
    Nat Chem; 2017 Mar; 9(3):201-206. PubMed ID: 28221352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fragment growing induces conformational changes in acetylcholine-binding protein: a structural and thermodynamic analysis.
    Edink E; Rucktooa P; Retra K; Akdemir A; Nahar T; Zuiderveld O; van Elk R; Janssen E; van Nierop P; van Muijlwijk-Koezen J; Smit AB; Sixma TK; Leurs R; de Esch IJ
    J Am Chem Soc; 2011 Apr; 133(14):5363-71. PubMed ID: 21322593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.