BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 26144862)

  • 1. Mechanism of Oxygen Activation in a Flavin-Dependent Monooxygenase: A Nearly Barrierless Formation of C4a-Hydroperoxyflavin via Proton-Coupled Electron Transfer.
    Visitsatthawong S; Chenprakhon P; Chaiyen P; Surawatanawong P
    J Am Chem Soc; 2015 Jul; 137(29):9363-74. PubMed ID: 26144862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme.
    Wongnate T; Surawatanawong P; Visitsatthawong S; Sucharitakul J; Scrutton NS; Chaiyen P
    J Am Chem Soc; 2014 Jan; 136(1):241-53. PubMed ID: 24368083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of C4a-hydroperoxyflavin protonation in the oxygenase component of p-hydroxyphenylacetate-3-hydroxylase.
    Chenprakhon P; Trisrivirat D; Thotsaporn K; Sucharitakul J; Chaiyen P
    Biochemistry; 2014 Jul; 53(25):4084-6. PubMed ID: 24878148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group.
    Sucharitakul J; Wongnate T; Chaiyen P
    J Biol Chem; 2011 May; 286(19):16900-9. PubMed ID: 21454569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic aspects regarding the elimination of H2O2 from C(4a)-hydroperoxyflavin. The role of a proton shuttle required for H2O2 elimination.
    Bach RD; Mattevi A
    J Org Chem; 2013 Sep; 78(17):8585-93. PubMed ID: 23895334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the somersault rearrangement in the oxidation step for flavin monooxygenases (FMO). A comparison between FMO and conventional xenobiotic oxidation with hydroperoxides.
    Bach RD
    J Phys Chem A; 2011 Oct; 115(40):11087-100. PubMed ID: 21888352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QM/MM Modeling of the Flavin Functionalization in the RutA Monooxygenase.
    Grigorenko B; Domratcheva T; Nemukhin A
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Smith SC
    Phys Chem Chem Phys; 2017 May; 19(20):12942-12952. PubMed ID: 28480935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting the low catalytic capability of flavin-dependent halogenases.
    Phintha A; Prakinee K; Jaruwat A; Lawan N; Visitsatthawong S; Kantiwiriyawanitch C; Songsungthong W; Trisrivirat D; Chenprakhon P; Mulholland A; van Pée KH; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021; 296():100068. PubMed ID: 33465708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model studies on p-hydroxybenzoate hydroxylase. The catalytic role of Arg-214 and Tyr-201 in the hydroxylation step.
    Bach RD; Dmitrenko O
    J Am Chem Soc; 2004 Jan; 126(1):127-42. PubMed ID: 14709077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the monooxygenase component of a two-component flavoprotein monooxygenase.
    Alfieri A; Fersini F; Ruangchan N; Prongjit M; Chaiyen P; Mattevi A
    Proc Natl Acad Sci U S A; 2007 Jan; 104(4):1177-82. PubMed ID: 17227849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site.
    Chen P; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(15):4991-5000. PubMed ID: 15080705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of free energy relationships to probe the individual steps of hydroxylation of p-hydroxybenzoate hydroxylase: studies with a series of 8-substituted flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 1999 Jun; 38(25):8124-37. PubMed ID: 10387058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.