BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26145174)

  • 1. Selective Suppression of the Splicing-Mediated MicroRNA Pathway by the Terminal Uridyltransferase Tailor.
    Bortolamiol-Becet D; Hu F; Jee D; Wen J; Okamura K; Lin CJ; Ameres SL; Lai EC
    Mol Cell; 2015 Jul; 59(2):217-28. PubMed ID: 26145174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uridylation of RNA Hairpins by Tailor Confines the Emergence of MicroRNAs in Drosophila.
    Reimão-Pinto MM; Ignatova V; Burkard TR; Hung JH; Manzenreither RA; Sowemimo I; Herzog VA; Reichholf B; Fariña-Lopez S; Ameres SL
    Mol Cell; 2015 Jul; 59(2):203-16. PubMed ID: 26145176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural insights into a unique preference for 3' terminal guanine of mirtron in Drosophila TUTase tailor.
    Cheng L; Li F; Jiang Y; Yu H; Xie C; Shi Y; Gong Q
    Nucleic Acids Res; 2019 Jan; 47(1):495-508. PubMed ID: 30407553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a TUTase/RNase complex required for
    Lin CJ; Wen J; Bejarano F; Hu F; Bortolamiol-Becet D; Kan L; Sanfilippo P; Kondo S; Lai EC
    RNA; 2017 Mar; 23(3):284-296. PubMed ID: 27974621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila.
    Okamura K; Hagen JW; Duan H; Tyler DM; Lai EC
    Cell; 2007 Jul; 130(1):89-100. PubMed ID: 17599402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates.
    Wen J; Ladewig E; Shenker S; Mohammed J; Lai EC
    PLoS Comput Biol; 2015 Sep; 11(9):e1004441. PubMed ID: 26325366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA biogenesis via splicing and exosome-mediated trimming in Drosophila.
    Flynt AS; Greimann JC; Chung WJ; Lima CD; Lai EC
    Mol Cell; 2010 Jun; 38(6):900-7. PubMed ID: 20620959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intronic microRNA precursors that bypass Drosha processing.
    Ruby JG; Jan CH; Bartel DP
    Nature; 2007 Jul; 448(7149):83-6. PubMed ID: 17589500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs.
    Westholm JO; Ladewig E; Okamura K; Robine N; Lai EC
    RNA; 2012 Feb; 18(2):177-92. PubMed ID: 22190743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals.
    Lee S; Jee D; Srivastava S; Yang A; Ramidi A; Shang R; Bortolamiol-Becet D; Pfeffer S; Gu S; Wen J; Lai EC
    Cell Rep; 2023 Feb; 42(2):112111. PubMed ID: 36800291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing miRNA structure of mirtrons and non-mirtrons.
    Titov II; Vorozheykin PS
    BMC Genomics; 2018 Feb; 19(Suppl 3):114. PubMed ID: 29504892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for acceptor RNA substrate selectivity of the 3' terminal uridylyl transferase Tailor.
    Kroupova A; Ivascu A; Reimão-Pinto MM; Ameres SL; Jinek M
    Nucleic Acids Res; 2019 Jan; 47(2):1030-1042. PubMed ID: 30462292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirtrons: microRNA biogenesis via splicing.
    Westholm JO; Lai EC
    Biochimie; 2011 Nov; 93(11):1897-904. PubMed ID: 21712066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells.
    Butkytė S; Čiupas L; Jakubauskienė E; Vilys L; Mocevicius P; Kanopka A; Vilkaitis G
    Clin Epigenetics; 2016; 8():33. PubMed ID: 27019673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian mirtron genes.
    Berezikov E; Chung WJ; Willis J; Cuppen E; Lai EC
    Mol Cell; 2007 Oct; 28(2):328-36. PubMed ID: 17964270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4).
    Thornton JE; Du P; Jing L; Sjekloca L; Lin S; Grossi E; Sliz P; Zon LI; Gregory RI
    Nucleic Acids Res; 2014 Oct; 42(18):11777-91. PubMed ID: 25223788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biogenesis and characterization of mammalian microRNAs of mirtron origin.
    Sibley CR; Seow Y; Saayman S; Dijkstra KK; El Andaloussi S; Weinberg MS; Wood MJ
    Nucleic Acids Res; 2012 Jan; 40(1):438-48. PubMed ID: 21914725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans.
    Chung WJ; Agius P; Westholm JO; Chen M; Okamura K; Robine N; Leslie CS; Lai EC
    Genome Res; 2011 Feb; 21(2):286-300. PubMed ID: 21177960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional VEGFA knockdown with artificial 3'-tailed mirtrons defined by 5' splice site and branch point.
    Kock KH; Kong KW; Hoon S; Seow Y
    Nucleic Acids Res; 2015 Jul; 43(13):6568-78. PubMed ID: 26089392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenesis, characterization, and functions of mirtrons.
    Salim U; Kumar A; Kulshreshtha R; Vivekanandan P
    Wiley Interdiscip Rev RNA; 2022 Jan; 13(1):e1680. PubMed ID: 34155810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.