These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 26145414)
1. Effect of extended strain fields on point defect phonon scattering in thermoelectric materials. Ortiz BR; Peng H; Lopez A; Parilla PA; Lany S; Toberer ES Phys Chem Chem Phys; 2015 Jul; 17(29):19410-23. PubMed ID: 26145414 [TBL] [Abstract][Full Text] [Related]
2. On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. He J; Sootsman JR; Girard SN; Zheng JC; Wen J; Zhu Y; Kanatzidis MG; Dravid VP J Am Chem Soc; 2010 Jun; 132(25):8669-75. PubMed ID: 20524606 [TBL] [Abstract][Full Text] [Related]
3. A model for predicting the thermal conductivity of SiO2-Ge nanoparticle composites. Kuryliuk V; Nadtochiy A; Korotchenkov O; Wang CC; Li PW Phys Chem Chem Phys; 2015 May; 17(20):13429-41. PubMed ID: 25927545 [TBL] [Abstract][Full Text] [Related]
4. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Zhu GH; Lee H; Lan YC; Wang XW; Joshi G; Wang DZ; Yang J; Vashaee D; Guilbert H; Pillitteri A; Dresselhaus MS; Chen G; Ren ZF Phys Rev Lett; 2009 May; 102(19):196803. PubMed ID: 19518985 [TBL] [Abstract][Full Text] [Related]
5. Thermal expansion and impurity effects on lattice thermal conductivity of solid argon. Chen Y; Lukes JR; Li D; Yang J; Wu Y J Chem Phys; 2004 Feb; 120(8):3841-6. PubMed ID: 15268549 [TBL] [Abstract][Full Text] [Related]
6. Role of self-organization, nanostructuring, and lattice strain on phonon transport in NaPb(18-x)Sn(x)BiTe(20) thermoelectric materials. He J; Gueguen A; Sootsman JR; Zheng JC; Wu L; Zhu Y; Kanatzidis MG; Dravid VP J Am Chem Soc; 2009 Dec; 131(49):17828-35. PubMed ID: 19995074 [TBL] [Abstract][Full Text] [Related]
7. What is the thermal conductivity limit of silicon germanium alloys? Lee Y; Pak AJ; Hwang GS Phys Chem Chem Phys; 2016 Jul; 18(29):19544-8. PubMed ID: 27398924 [TBL] [Abstract][Full Text] [Related]
8. Influence of defect distribution on the thermoelectric properties of FeNbSb based materials. Guo S; Yang K; Zeng Z; Zhang Y Phys Chem Chem Phys; 2018 May; 20(21):14441-14449. PubMed ID: 29781500 [TBL] [Abstract][Full Text] [Related]
9. Defect Chemistry for Thermoelectric Materials. Li Z; Xiao C; Zhu H; Xie Y J Am Chem Soc; 2016 Nov; 138(45):14810-14819. PubMed ID: 27802035 [TBL] [Abstract][Full Text] [Related]
10. Chemical composition tuning in quaternary p-type Pb-chalcogenides--a promising strategy for enhanced thermoelectric performance. Yamini SA; Wang H; Gibbs ZM; Pei Y; Dou SX; Snyder GJ Phys Chem Chem Phys; 2014 Feb; 16(5):1835-40. PubMed ID: 24322836 [TBL] [Abstract][Full Text] [Related]
11. Direct Observation of Inherent Atomic-Scale Defect Disorders responsible for High-Performance Ti Kim KS; Kim YM; Mun H; Kim J; Park J; Borisevich AY; Lee KH; Kim SW Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28737233 [TBL] [Abstract][Full Text] [Related]
12. Computational design of thermoelectric alloys through optimization of transport and dopability. Qu J; Balvanz A; Baranets S; Bobev S; Gorai P Mater Horiz; 2022 Feb; 9(2):720-730. PubMed ID: 34854862 [TBL] [Abstract][Full Text] [Related]
13. Role of sodium doping in lead chalcogenide thermoelectrics. He J; Zhao LD; Zheng JC; Doak JW; Wu H; Wang HQ; Lee Y; Wolverton C; Kanatzidis MG; Dravid VP J Am Chem Soc; 2013 Mar; 135(12):4624-7. PubMed ID: 23445504 [TBL] [Abstract][Full Text] [Related]
14. Diameter dependent thermoelectric properties of individual SnTe nanowires. Xu EZ; Li Z; Martinez JA; Sinitsyn N; Htoon H; Li N; Swartzentruber B; Hollingsworth JA; Wang J; Zhang SX Nanoscale; 2015 Feb; 7(7):2869-76. PubMed ID: 25623253 [TBL] [Abstract][Full Text] [Related]
15. Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures. Lee SY; Kim GS; Lee MR; Lim H; Kim WD; Lee SK Nanotechnology; 2013 May; 24(18):185401. PubMed ID: 23575254 [TBL] [Abstract][Full Text] [Related]
16. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials. Yamasaka S; Nakamura Y; Ueda T; Takeuchi S; Sakai A Sci Rep; 2015 Oct; 5():14490. PubMed ID: 26434678 [TBL] [Abstract][Full Text] [Related]
17. Nanostructures versus solid solutions: low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. Poudeu PF; D'Angelo J; Kong H; Downey A; Short JL; Pcionek R; Hogan TP; Uher C; Kanatzidis MG J Am Chem Soc; 2006 Nov; 128(44):14347-55. PubMed ID: 17076508 [TBL] [Abstract][Full Text] [Related]
18. Chemical Descriptors of Yttria-Stabilized Zirconia at Low Defect Concentration: An ab Initio Study. Parkes MA; Refson K; d'Avezac M; Offer GJ; Brandon NP; Harrison NM J Phys Chem A; 2015 Jun; 119(24):6412-20. PubMed ID: 25973648 [TBL] [Abstract][Full Text] [Related]
19. Impact of rattlers on thermal conductivity of a thermoelectric clathrate: a first-principles study. Tadano T; Gohda Y; Tsuneyuki S Phys Rev Lett; 2015 Mar; 114(9):095501. PubMed ID: 25793824 [TBL] [Abstract][Full Text] [Related]
20. Effects of nano-void density, size and spatial population on thermal conductivity: a case study of GaN crystal. Zhou XW; Jones RE J Phys Condens Matter; 2012 Aug; 24(32):325804, 1-15. PubMed ID: 22785076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]