These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26145414)

  • 41. Mechanisms governing phonon scattering by topological defects in graphene nanoribbons.
    Zhu Z; Yang X; Huang M; He Q; Yang G; Wang Z
    Nanotechnology; 2016 Feb; 27(5):055401. PubMed ID: 26671039
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel nano-configuration for thermoelectrics: helicity induced thermal conductivity reduction in nanowires.
    Varshney V; Roy AK; Dudis DS; Lee J; Farmer BL
    Nanoscale; 2012 Aug; 4(16):5009-16. PubMed ID: 22767206
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phonon scattering through a local anisotropic structural disorder in the thermoelectric solid solution Cu2Zn(1-x)Fe(x)GeSe4.
    Zeier WG; Pei Y; Pomrehn G; Day T; Heinz N; Heinrich CP; Snyder GJ; Tremel W
    J Am Chem Soc; 2013 Jan; 135(2):726-32. PubMed ID: 23256607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-dimensional phonon transport in graphene.
    Nika DL; Balandin AA
    J Phys Condens Matter; 2012 Jun; 24(23):233203. PubMed ID: 22562955
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New and old concepts in thermoelectric materials.
    Sootsman JR; Chung DY; Kanatzidis MG
    Angew Chem Int Ed Engl; 2009; 48(46):8616-39. PubMed ID: 19866458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach.
    Tan G; Zhao LD; Shi F; Doak JW; Lo SH; Sun H; Wolverton C; Dravid VP; Uher C; Kanatzidis MG
    J Am Chem Soc; 2014 May; 136(19):7006-17. PubMed ID: 24785377
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanostructured materials for thermoelectric applications.
    Bux SK; Fleurial JP; Kaner RB
    Chem Commun (Camb); 2010 Nov; 46(44):8311-24. PubMed ID: 20922257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study.
    Garg J; Bonini N; Kozinsky B; Marzari N
    Phys Rev Lett; 2011 Jan; 106(4):045901. PubMed ID: 21405336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Half metallic ferromagnets.
    Dowben P
    J Phys Condens Matter; 2007 Aug; 19(31):310301. PubMed ID: 21694101
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phonon thermal conductivity suppression of bulk silicon nanowire composites for efficient thermoelectric conversion.
    Chen TG; Yu P; Chou RH; Pan CL
    Opt Express; 2010 Sep; 18 Suppl 3():A467-76. PubMed ID: 21165077
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bridging silicon nanoparticles and thermoelectrics: phenylacetylene functionalization.
    Ashby SP; Thomas JA; García-Cañadas J; Min G; Corps J; Powell AV; Xu H; Shen W; Chao Y
    Faraday Discuss; 2014; 176():349-61. PubMed ID: 25406542
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of point defects on thermal-mechanical properties of BiCuOTe: a first-principles study.
    Jiang M; Guo XC; Zu XT; Singh CV
    Phys Chem Chem Phys; 2023 Apr; 25(15):10715-10725. PubMed ID: 37000601
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High thermopower and ultra low thermal conductivity in Cd-based Zintl phase compounds.
    Pandey T; Singh AK
    Phys Chem Chem Phys; 2015 Jul; 17(26):16917-26. PubMed ID: 26060054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys.
    Poudel B; Hao Q; Ma Y; Lan Y; Minnich A; Yu B; Yan X; Wang D; Muto A; Vashaee D; Chen X; Liu J; Dresselhaus MS; Chen G; Ren Z
    Science; 2008 May; 320(5876):634-8. PubMed ID: 18356488
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material.
    Bera C; Jacob S; Opahle I; Gunda NS; Chmielowski R; Dennler G; Madsen GK
    Phys Chem Chem Phys; 2014 Oct; 16(37):19894-9. PubMed ID: 25115284
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties.
    Claudio T; Stein N; Stroppa DG; Klobes B; Koza MM; Kudejova P; Petermann N; Wiggers H; Schierning G; Hermann RP
    Phys Chem Chem Phys; 2014 Dec; 16(47):25701-9. PubMed ID: 24848359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Avoided crossing of rattler modes in thermoelectric materials.
    Christensen M; Abrahamsen AB; Christensen NB; Juranyi F; Andersen NH; Lefmann K; Andreasson J; Bahl CR; Iversen BB
    Nat Mater; 2008 Oct; 7(10):811-5. PubMed ID: 18758454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal and thermoelectric properties of graphene.
    Xu Y; Li Z; Duan W
    Small; 2014 Jun; 10(11):2182-99. PubMed ID: 24610791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of vacancy ordering on thermal transport in crystalline phase-change materials.
    Siegert KS; Lange FR; Sittner ER; Volker H; Schlockermann C; Siegrist T; Wuttig M
    Rep Prog Phys; 2015 Jan; 78(1):013001. PubMed ID: 25471006
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanostructuring of thermoelectric Mg(2) Si via a nonequilibrium intermediate state.
    Ikeda T; Haviez L; Li Y; Snyder GJ
    Small; 2012 Aug; 8(15):2350-5. PubMed ID: 22544818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.