These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 26145586)
1. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model. Kloet SK; Walczak AP; Louisse J; van den Berg HH; Bouwmeester H; Tromp P; Fokkink RG; Rietjens IM Toxicol In Vitro; 2015 Oct; 29(7):1701-10. PubMed ID: 26145586 [TBL] [Abstract][Full Text] [Related]
2. Uptake and transport of pullulan acetate nanoparticles in the BeWo b30 placental barrier cell model. Tang H; Jiang Z; He H; Li X; Hu H; Zhang N; Dai Y; Zhou Z Int J Nanomedicine; 2018; 13():4073-4082. PubMed ID: 30034233 [TBL] [Abstract][Full Text] [Related]
3. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Walczak AP; Kramer E; Hendriksen PJ; Helsdingen R; van der Zande M; Rietjens IM; Bouwmeester H Nanotoxicology; 2015; 9(7):886-94. PubMed ID: 25672814 [TBL] [Abstract][Full Text] [Related]
4. An advanced human in vitro co-culture model for translocation studies across the placental barrier. Aengenheister L; Keevend K; Muoth C; Schönenberger R; Diener L; Wick P; Buerki-Thurnherr T Sci Rep; 2018 Mar; 8(1):5388. PubMed ID: 29599470 [TBL] [Abstract][Full Text] [Related]
5. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Li H; van Ravenzwaay B; Rietjens IM; Louisse J Arch Toxicol; 2013 Sep; 87(9):1661-9. PubMed ID: 23689295 [TBL] [Abstract][Full Text] [Related]
6. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Walczak AP; Kramer E; Hendriksen PJ; Tromp P; Helsper JP; van der Zande M; Rietjens IM; Bouwmeester H Nanotoxicology; 2015 May; 9(4):453-61. PubMed ID: 25093449 [TBL] [Abstract][Full Text] [Related]
7. In vitro placental model optimization for nanoparticle transport studies. Cartwright L; Poulsen MS; Nielsen HM; Pojana G; Knudsen LE; Saunders M; Rytting E Int J Nanomedicine; 2012; 7():497-510. PubMed ID: 22334780 [TBL] [Abstract][Full Text] [Related]
8. Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Aengenheister L; Dugershaw BB; Manser P; Wichser A; Schoenenberger R; Wick P; Hesler M; Kohl Y; Straskraba S; Suter MJ; Buerki-Thurnherr T Eur J Pharm Biopharm; 2019 Sep; 142():488-497. PubMed ID: 31330257 [TBL] [Abstract][Full Text] [Related]
10. Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier. George I; Naudin G; Boland S; Mornet S; Contremoulins V; Beugnon K; Martinon L; Lambert O; Baeza-Squiban A Nanoscale; 2015 Mar; 7(10):4529-44. PubMed ID: 25685900 [TBL] [Abstract][Full Text] [Related]
11. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Correia Carreira S; Walker L; Paul K; Saunders M Nanotoxicology; 2015 May; 9 Suppl 1():66-78. PubMed ID: 23927440 [TBL] [Abstract][Full Text] [Related]
12. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis. Phuc LTM; Taniguchi A Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28629179 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of silica nanoparticles in the human placenta. Poulsen MS; Mose T; Maroun LL; Mathiesen L; Knudsen LE; Rytting E Nanotoxicology; 2015 May; 9 Suppl 1(0 1):79-86. PubMed ID: 23742169 [TBL] [Abstract][Full Text] [Related]
14. Combination of the BeWo b30 placental transport model and the embryonic stem cell test to assess the potential developmental toxicity of silver nanoparticles. Abdelkhaliq A; van der Zande M; Peters RJB; Bouwmeester H Part Fibre Toxicol; 2020 Mar; 17(1):11. PubMed ID: 32156294 [TBL] [Abstract][Full Text] [Related]
15. Bidirectional Transfer Study of Polystyrene Nanoparticles across the Placental Barrier in an ex Vivo Human Placental Perfusion Model. Grafmueller S; Manser P; Diener L; Diener PA; Maeder-Althaus X; Maurizi L; Jochum W; Krug HF; Buerki-Thurnherr T; von Mandach U; Wick P Environ Health Perspect; 2015 Dec; 123(12):1280-6. PubMed ID: 25956008 [TBL] [Abstract][Full Text] [Related]
16. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow. Huang K; Boerhan R; Liu C; Jiang G Mol Pharm; 2017 Dec; 14(12):4618-4627. PubMed ID: 29096441 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle transport across the placental barrier: pushing the field forward! Muoth C; Aengenheister L; Kucki M; Wick P; Buerki-Thurnherr T Nanomedicine (Lond); 2016 Apr; 11(8):941-57. PubMed ID: 26979802 [TBL] [Abstract][Full Text] [Related]
18. In vitro transport mechanism of psoralen in a human placental cell line (BeWo cells). Guo J; Song D; Han F; Zhang W; Wang Y; Wang Y; Du W Planta Med; 2015 Jan; 81(2):138-44. PubMed ID: 25626141 [TBL] [Abstract][Full Text] [Related]
19. Energy independent uptake and release of polystyrene nanoparticles in primary mammalian cell cultures. Fiorentino I; Gualtieri R; Barbato V; Mollo V; Braun S; Angrisani A; Turano M; Furia M; Netti PA; Guarnieri D; Fusco S; Talevi R Exp Cell Res; 2015 Jan; 330(2):240-247. PubMed ID: 25246129 [TBL] [Abstract][Full Text] [Related]
20. [Impedance Spectroscopy and Transcriptome Analysis of Choriocarcinoma BeWo b30 as a Model of Human Placenta]. Nikulin SV; Knyazev EN; Gerasimenko TN; Shilin SA; Gazizov IN; Zakharova GS; Poloznikov AA; Sakharov DA Mol Biol (Mosk); 2019; 53(3):467-475. PubMed ID: 31184612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]