BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26145727)

  • 1. Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction.
    Yao B; Li C; Ma J; Shi G
    Phys Chem Chem Phys; 2015 Jul; 17(29):19538-45. PubMed ID: 26145727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen reduction reaction by electrochemically reduced graphene oxide.
    Bikkarolla SK; Cumpson P; Joseph P; Papakonstantinou P
    Faraday Discuss; 2014; 173():415-28. PubMed ID: 25467392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytically active graphene-porphyrin MOF composite for oxygen reduction reaction.
    Jahan M; Bao Q; Loh KP
    J Am Chem Soc; 2012 Apr; 134(15):6707-13. PubMed ID: 22439970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbocatalysts: graphene oxide and its derivatives.
    Su C; Loh KP
    Acc Chem Res; 2013 Oct; 46(10):2275-85. PubMed ID: 23270430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction.
    Iwase K; Yoshioka T; Nakanishi S; Hashimoto K; Kamiya K
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11068-72. PubMed ID: 26227987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular pillar supported graphene oxide framework: conformational heterogeneity and tunable d-spacing.
    Mungse HP; Singh R; Sugimura H; Kumar N; Khatri OP
    Phys Chem Chem Phys; 2015 Aug; 17(32):20822-9. PubMed ID: 26214400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.
    Teymourian H; Salimi A; Khezrian S
    Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallocorroles as Nonprecious-Metal Catalysts for Oxygen Reduction.
    Levy N; Mahammed A; Kosa M; Major DT; Gross Z; Elbaz L
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):14080-4. PubMed ID: 26429211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
    Wu G; Zelenay P
    Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction.
    Benson J; Xu Q; Wang P; Shen Y; Sun L; Wang T; Li M; Papakonstantinou P
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19726-36. PubMed ID: 25334050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials.
    Chen X; Chen X; Xu X; Yang Z; Liu Z; Zhang L; Xu X; Chen Y; Huang S
    Nanoscale; 2014 Nov; 6(22):13740-7. PubMed ID: 25286286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoarchitectured Graphene-Organic Frameworks (GOFs): Synthetic Strategies, Properties, and Applications.
    Haque E; Yamauchi Y; Malgras V; Reddy KR; Yi JW; Hossain MSA; Kim J
    Chem Asian J; 2018 Dec; 13(23):3561-3574. PubMed ID: 30334602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction.
    Zhu Y; Zhang B; Liu X; Wang DW; Su DS
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10673-7. PubMed ID: 25115803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity.
    Chen Y; Huang ZH; Yue M; Kang F
    Nanoscale; 2014 Jan; 6(2):978-85. PubMed ID: 24287877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size Effect of Graphene Oxide on Graphene-Aerogel-Supported Au Catalysts for Electrochemical CO
    Shen S; Pan X; Wang J; Bao T; Liu X; Tang Z; Xiu H; Li J
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Molecular Stacking for Engineered Fluorescent Three-Dimensional Reduced Graphene Oxide and Coronene Frameworks.
    Mao B; Cortezon-Tamarit F; Ge H; Kuganathan N; Mirabello V; Palomares FJ; Kociok-Köhn G; Botchway SW; Calatayud DG; Pascu SI
    ChemistryOpen; 2019 Dec; 8(12):1383-1398. PubMed ID: 31844605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis.
    Su HY; Gorlin Y; Man IC; Calle-Vallejo F; Nørskov JK; Jaramillo TF; Rossmeisl J
    Phys Chem Chem Phys; 2012 Oct; 14(40):14010-22. PubMed ID: 22990481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-doped mesoporous graphene as a synergistic electrocatalyst matrix for high-performance oxygen reduction reaction.
    Xiao J; Bian X; Liao L; Zhang S; Ji C; Liu B
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17654-60. PubMed ID: 25264608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction.
    Wang S; Yu D; Dai L; Chang DW; Baek JB
    ACS Nano; 2011 Aug; 5(8):6202-9. PubMed ID: 21780760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.