These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 26146130)
1. Risk of Misdiagnosis Due to Allele Dropout and False-Positive PCR Artifacts in Molecular Diagnostics: Analysis of 30,769 Genotypes. Blais J; Lavoie SB; Giroux S; Bussières J; Lindsay C; Dionne J; Laroche M; Giguère Y; Rousseau F J Mol Diagn; 2015 Sep; 17(5):505-14. PubMed ID: 26146130 [TBL] [Abstract][Full Text] [Related]
2. Allele dropout caused by a non-primer-site SNV affecting PCR amplification--a call for next-generation primer design algorithm. Lam CW; Mak CM Clin Chim Acta; 2013 Jun; 421():208-12. PubMed ID: 23523590 [TBL] [Abstract][Full Text] [Related]
3. Incidence of amplification failure in DMPK allele due to allelic dropout event in a diagnostic laboratory. De Siena C; Cardani R; Brigonzi E; Bosè F; Fossati B; Meola G; Costa E; Valaperta R Clin Chim Acta; 2018 Sep; 484():111-116. PubMed ID: 29803895 [TBL] [Abstract][Full Text] [Related]
4. Multiplex allele-specific target amplification based on PCR suppression. Broude NE; Zhang L; Woodward K; Englert D; Cantor CR Proc Natl Acad Sci U S A; 2001 Jan; 98(1):206-11. PubMed ID: 11136256 [TBL] [Abstract][Full Text] [Related]
5. Novel high-speed droplet-allele specific-polymerase chain reaction: application in the rapid genotyping of single nucleotide polymorphisms. Taira C; Matsuda K; Yamaguchi A; Sueki A; Koeda H; Takagi F; Kobayashi Y; Sugano M; Honda T Clin Chim Acta; 2013 Sep; 424():39-46. PubMed ID: 23685227 [TBL] [Abstract][Full Text] [Related]
6. Next-generation sequencing can reveal in vitro-generated PCR crossover products: some artifactual sequences correspond to HLA alleles in the IMGT/HLA database. Holcomb CL; Rastrou M; Williams TC; Goodridge D; Lazaro AM; Tilanus M; Erlich HA Tissue Antigens; 2014 Jan; 83(1):32-40. PubMed ID: 24355006 [TBL] [Abstract][Full Text] [Related]
7. An extensive polymerase chain reaction-allele-specific polymorphism strategy for clinical ABO blood group genotyping that avoids potential errors caused by null, subgroup, and hybrid alleles. Hosseini-Maaf B; Hellberg A; Chester MA; Olsson ML Transfusion; 2007 Nov; 47(11):2110-25. PubMed ID: 17958541 [TBL] [Abstract][Full Text] [Related]
8. The Italian External Quality Control Programme for cystic fibrosis molecular diagnosis: 4 years of activity. Salvatore M; Falbo V; Floridia G; Censi F; Tosto F; Bombieri C; Castaldo G; Pignatti PF; Rosatelli MC; Taruscio D Clin Chem Lab Med; 2007; 45(2):254-60. PubMed ID: 17311518 [TBL] [Abstract][Full Text] [Related]
9. Allele dropout in sequential PCR and FISH analysis of single cells (cell recycling). Rechitsky S; Freidine M; Verlinsky Y; Strom CM J Assist Reprod Genet; 1996 Feb; 13(2):115-24. PubMed ID: 8688583 [TBL] [Abstract][Full Text] [Related]
10. Rapid single nucleotide polymorphism based method for hematopoietic chimerism analysis and monitoring using high-speed droplet allele-specific PCR and allele-specific quantitative PCR. Taira C; Matsuda K; Yamaguchi A; Uehara M; Sugano M; Okumura N; Honda T Clin Chim Acta; 2015 May; 445():101-6. PubMed ID: 25797898 [TBL] [Abstract][Full Text] [Related]
11. Robustness of single-base extension against mismatches at the site of primer attachment in a clinical assay. Kirsten H; Teupser D; Weissfuss J; Wolfram G; Emmrich F; Ahnert P J Mol Med (Berl); 2007 Apr; 85(4):361-9. PubMed ID: 17160404 [TBL] [Abstract][Full Text] [Related]
12. Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Verhaeghen K; Van Bortel W; Roelants P; Backeljau T; Coosemans M Malar J; 2006 Feb; 5():16. PubMed ID: 16504072 [TBL] [Abstract][Full Text] [Related]
13. Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis. Findlay I; Ray P; Quirke P; Rutherford A; Lilford R Hum Reprod; 1995 Jun; 10(6):1609-18. PubMed ID: 7593544 [TBL] [Abstract][Full Text] [Related]
14. Differential haplotype amplification leads to misgenotyping of heterozygote as homozygote when using single nucleotide mismatch primer. De Sarkar N; Majumder M; Roy B Electrophoresis; 2012 Dec; 33(23):3564-73. PubMed ID: 23161286 [TBL] [Abstract][Full Text] [Related]
15. Refinement of single-nucleotide polymorphism genotyping methods on human genomic DNA: amplifluor allele-specific polymerase chain reaction versus ligation detection reaction-TaqMan. Rickert AM; Borodina TA; Kuhn EJ; Lehrach H; Sperling S Anal Biochem; 2004 Jul; 330(2):288-97. PubMed ID: 15203335 [TBL] [Abstract][Full Text] [Related]
17. [Establishment of a novel HLA genotyping method for preimplantation genetic diagnonis using multiple displacement amplification-polymerase chain reaction-sequencing based technique]. Zhang Y; Luo H; Zhang Y Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2015 Dec; 32(6):771-5. PubMed ID: 26663045 [TBL] [Abstract][Full Text] [Related]
18. Identification of an intronic single nucleotide polymorphism leading to allele dropout during validation of a CDH1 sequencing assay: implications for designing polymerase chain reaction-based assays. Mullins FM; Dietz L; Lay M; Zehnder JL; Ford J; Chun N; Schrijver I Genet Med; 2007 Nov; 9(11):752-60. PubMed ID: 18007144 [TBL] [Abstract][Full Text] [Related]
19. Single-tube real-time multiple allele-specific PCR for genotyping chicken Mx gene G2032A SNP. Ye X; Zhang Y; Tan Z; Li K Br Poult Sci; 2010 Jun; 51(3):361-7. PubMed ID: 20680871 [TBL] [Abstract][Full Text] [Related]
20. Modified tetra-primer ARMS PCR as a single-nucleotide polymorphism genotyping tool. Mesrian Tanha H; Mojtabavi Naeini M; Rahgozar S; Rasa SM; Vallian S Genet Test Mol Biomarkers; 2015 Mar; 19(3):156-61. PubMed ID: 25658900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]