These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26146493)

  • 1. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations.
    Dral PO; von Lilienfeld OA; Thiel W
    J Chem Theory Comput; 2015 May; 11(5):2120-2125. PubMed ID: 26146493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    J Chem Theory Comput; 2015 May; 11(5):2087-96. PubMed ID: 26574412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark of Electronically Excited States for Semiempirical Methods: MNDO, AM1, PM3, OM1, OM2, OM3, INDO/S, and INDO/S2.
    Silva-Junior MR; Thiel W
    J Chem Theory Comput; 2010 May; 6(5):1546-64. PubMed ID: 26615690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.
    Hansen K; Montavon G; Biegler F; Fazli S; Rupp M; Scheffler M; von Lilienfeld OA; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2013 Aug; 9(8):3404-19. PubMed ID: 26584096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships.
    Janet JP; Kulik HJ
    J Phys Chem A; 2017 Nov; 121(46):8939-8954. PubMed ID: 29095620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting Quantum Machine Learning Models with a Multilevel Combination Technique: Pople Diagrams Revisited.
    Zaspel P; Huang B; Harbrecht H; von Lilienfeld OA
    J Chem Theory Comput; 2019 Mar; 15(3):1546-1559. PubMed ID: 30516999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    Balabin RM; Lomakina EI
    Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics.
    Zhou G; Lubbers N; Barros K; Tretiak S; Nebgen B
    Proc Natl Acad Sci U S A; 2022 Jul; 119(27):e2120333119. PubMed ID: 35776544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum chemistry structures and properties of 134 kilo molecules.
    Ramakrishnan R; Dral PO; Rupp M; von Lilienfeld OA
    Sci Data; 2014; 1():140022. PubMed ID: 25977779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random versus Systematic Errors in Reaction Enthalpies Computed Using Semiempirical and Minimal Basis Set Methods.
    Kromann JC; Welford A; Christensen AS; Jensen JH
    ACS Omega; 2018 Apr; 3(4):4372-4377. PubMed ID: 31458662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic and ab initio analysis of the controversial enthalpy of formation of formaldehyde.
    da Silva G; Bozzelli JW; Sebbar N; Bockhorn H
    Chemphyschem; 2006 May; 7(5):1119-26. PubMed ID: 16596698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms.
    Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA
    J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules.
    Nemec N; Towler MD; Needs RJ
    J Chem Phys; 2010 Jan; 132(3):034111. PubMed ID: 20095732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OMx-D: semiempirical methods with orthogonalization and dispersion corrections. Implementation and biochemical application.
    Tuttle T; Thiel W
    Phys Chem Chem Phys; 2008 Apr; 10(16):2159-66. PubMed ID: 18404221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters.
    Dral PO; Wu X; Spörkel L; Koslowski A; Weber W; Steiger R; Scholten M; Thiel W
    J Chem Theory Comput; 2016 Mar; 12(3):1082-96. PubMed ID: 26771204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the computationally efficient self-consistent-charge density-functional tight-binding method to magnesium-containing molecules.
    Cai ZL; Lopez P; Reimers JR; Cui Q; Elstner M
    J Phys Chem A; 2007 Jul; 111(26):5743-50. PubMed ID: 17555305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Evolving Machine: A Continuously Improving Model for Molecular Thermochemistry.
    Li YP; Han K; Grambow CA; Green WH
    J Phys Chem A; 2019 Mar; 123(10):2142-2152. PubMed ID: 30758953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens.
    Tubert-Brohman I; Guimarães CR; Repasky MP; Jorgensen WL
    J Comput Chem; 2004 Jan; 25(1):138-50. PubMed ID: 14635001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast and accurate generation of ab initio quality atomic charges using nonparametric statistical regression.
    Rai BK; Bakken GA
    J Comput Chem; 2013 Jul; 34(19):1661-71. PubMed ID: 23653432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.