BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 26146842)

  • 1. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses.
    McGillewie L; Soliman ME
    Proteins; 2015 Sep; 83(9):1693-705. PubMed ID: 26146842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flap dynamics of plasmepsin proteases: insight into proposed parameters and molecular dynamics.
    Karubiu W; Bhakat S; McGillewie L; Soliman ME
    Mol Biosyst; 2015 Apr; 11(4):1061-6. PubMed ID: 25630418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The binding landscape of plasmepsin V and the implications for flap dynamics.
    L M; Soliman ME
    Mol Biosyst; 2016 Apr; 12(5):1457-67. PubMed ID: 26965894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting functional residues in Plasmodium falciparum plasmepsins by combining sequence and structural analysis with molecular dynamics simulations.
    Valiente PA; Batista PR; Pupo A; Pons T; Valencia A; Pascutti PG
    Proteins; 2008 Nov; 73(2):440-57. PubMed ID: 18442137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrrolidine derivatives as plasmepsin inhibitors: binding mode analysis assisted by molecular dynamics simulations of a highly flexible protein.
    Luksch T; Blum A; Klee N; Diederich WE; Sotriffer CA; Klebe G
    ChemMedChem; 2010 Mar; 5(3):443-54. PubMed ID: 20112327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum.
    Klemba M; Goldberg DE
    Mol Biochem Parasitol; 2005 Oct; 143(2):183-91. PubMed ID: 16024107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of plasmepsins I and II aspartic proteases of the Plasmodium falciparum digestive vacuole.
    Luker KE; Francis SE; Gluzman IY; Goldberg DE
    Mol Biochem Parasitol; 1996 Jul; 79(1):71-8. PubMed ID: 8844673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative molecular dynamics study on BACE1 and BACE2 flap flexibility.
    Kumalo HM; Soliman ME
    J Recept Signal Transduct Res; 2016 Oct; 36(5):505-14. PubMed ID: 26804314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of flap flexibility of β-secretase using molecular dynamic simulations.
    Kumalo HM; Bhakat S; Soliman ME
    J Biomol Struct Dyn; 2016 May; 34(5):1008-19. PubMed ID: 26208540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.
    Li F; Bounkeua V; Pettersen K; Vinetz JM
    Malar J; 2016 Feb; 15():111. PubMed ID: 26911483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant expression and enzymatic subsite characterization of plasmepsin 4 from the four Plasmodium species infecting man.
    Li T; Yowell CA; Beyer BB; Hung SH; Westling J; Lam MT; Dunn BM; Dame JB
    Mol Biochem Parasitol; 2004 May; 135(1):101-9. PubMed ID: 15287591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural rationale for the recognition of arginine at P₃ in PEXEL motif containing proteins of Plasmodium falciparum by plasmepsin V.
    Guruprasad L; Tanneeru K; Guruprasad K
    Protein Pept Lett; 2011 Jun; 18(6):634-41. PubMed ID: 21342099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pepsinogen-like activation intermediate of plasmepsin II revealed by molecular dynamics analysis.
    Friedman R; Caflisch A
    Proteins; 2008 Dec; 73(4):814-27. PubMed ID: 18498105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of plasmepsin IV bound to an allophenylnorstatine inhibitor.
    Gutiérrez-de-Terán H; Nervall M; Dunn BM; Clemente JC; Aqvist J
    FEBS Lett; 2006 Oct; 580(25):5910-6. PubMed ID: 17045991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures of plasmepsin II from Plasmodium falciparum in complex with two hydroxyethylamine-based inhibitors.
    Recacha R; Leitans J; Akopjana I; Aprupe L; Trapencieris P; Jaudzems K; Jirgensons A; Tars K
    Acta Crystallogr F Struct Biol Commun; 2015 Dec; 71(Pt 12):1531-9. PubMed ID: 26625296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping selectivity and specificity of active site of plasmepsins from Plasmodium falciparum using molecular interaction field approach.
    Kumar A; Ghosh I
    Protein Pept Lett; 2007; 14(6):569-74. PubMed ID: 17627598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterisation of plasmepsin I from Plasmodium falciparum.
    Moon RP; Tyas L; Certa U; Rupp K; Bur D; Jacquet C; Matile H; Loetscher H; Grueninger-Leitch F; Kay J; Dunn BM; Berry C; Ridley RG
    Eur J Biochem; 1997 Mar; 244(2):552-60. PubMed ID: 9119023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic Characterization of Recombinant Food Vacuole Plasmepsin 4 from the Rodent Malaria Parasite Plasmodium berghei.
    Liu P; Robbins AH; Marzahn MR; McClung SH; Yowell CA; Stevens SM; Dame JB; Dunn BM
    PLoS One; 2015; 10(10):e0141758. PubMed ID: 26510189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmepsins as potential targets for new antimalarial therapy.
    Ersmark K; Samuelsson B; Hallberg A
    Med Res Rev; 2006 Sep; 26(5):626-66. PubMed ID: 16838300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Simulations of Ligand-Induced Flap Conformational Changes in Cathepsin-D-A Comparative Study.
    Arodola OA; Soliman ME
    J Cell Biochem; 2016 Nov; 117(11):2643-57. PubMed ID: 27038253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.