These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
620 related articles for article (PubMed ID: 26146861)
1. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps. Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861 [TBL] [Abstract][Full Text] [Related]
2. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach. Stevens MC; Wilson S; Bradley A; Fraser J; Timms D Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848 [TBL] [Abstract][Full Text] [Related]
3. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices. Gregory SD; Stevens MC; Pauls JP; Schummy E; Diab S; Thomson B; Anderson B; Tansley G; Salamonsen R; Fraser JF; Timms D Artif Organs; 2016 Sep; 40(9):894-903. PubMed ID: 26748566 [TBL] [Abstract][Full Text] [Related]
5. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study. Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169 [TBL] [Abstract][Full Text] [Related]
6. Suction due to left ventricular assist: implications for device control and management. Reesink K; Dekker A; Van der Nagel T; Beghi C; Leonardi F; Botti P; De Cicco G; Lorusso R; Van der Veen F; Maessen J Artif Organs; 2007 Jul; 31(7):542-9. PubMed ID: 17584479 [TBL] [Abstract][Full Text] [Related]
7. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps. Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664 [TBL] [Abstract][Full Text] [Related]
8. In vitro and in vivo characterization of three different modes of pump operation when using a left ventricular assist device as a right ventricular assist device. Stevens MC; Gregory SD; Nestler F; Thomson B; Choudhary J; Garlick B; Pauls JP; Fraser JF; Timms D Artif Organs; 2014 Nov; 38(11):931-9. PubMed ID: 24660783 [TBL] [Abstract][Full Text] [Related]
9. Control of ventricular unloading using an electrocardiogram-synchronized Thoratec paracorporeal ventricular assist device. Amacher R; Weber A; Brinks H; Axiak S; Ferreira A; Guzzella L; Carrel T; Antaki J; Vandenberghe S J Thorac Cardiovasc Surg; 2013 Sep; 146(3):710-7. PubMed ID: 23317942 [TBL] [Abstract][Full Text] [Related]
10. The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development. Telyshev D; Denisov M; Pugovkin A; Selishchev S; Nesterenko I Artif Organs; 2018 Apr; 42(4):432-443. PubMed ID: 29508416 [TBL] [Abstract][Full Text] [Related]
11. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery. Sunagawa G; Byram N; Karimov JH; Horvath DJ; Moazami N; Starling RC; Fukamachi K J Thorac Cardiovasc Surg; 2015 Aug; 150(2):343-8. PubMed ID: 26204865 [TBL] [Abstract][Full Text] [Related]
12. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery. Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446 [TBL] [Abstract][Full Text] [Related]
13. Cavoaortic shunt improves hemodynamics with preserved oxygen delivery in experimental right ventricular failure during left ventricular assist device therapy. Vikholm P; Schiller P; Johansson J; Hellgren L J Thorac Cardiovasc Surg; 2014 Feb; 147(2):625-31. PubMed ID: 23477692 [TBL] [Abstract][Full Text] [Related]
15. Pulsatile control of rotary blood pumps: Does the modulation waveform matter? Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246 [TBL] [Abstract][Full Text] [Related]
16. Prediction of the external work of the native heart from the dynamic H-Q curves of the rotary blood pumps during left heart bypass. Yokoyama Y; Kawaguchi O; Kitao T; Kimura T; Steinseifer U; Takatani S Artif Organs; 2010 Sep; 34(9):766-77. PubMed ID: 20883395 [TBL] [Abstract][Full Text] [Related]
17. Autosynchronized systolic unloading during left ventricular assist with a centrifugal pump. Kono S; Nishimura K; Nishina T; Yuasa S; Ueyama K; Hamada C; Akamatsu T; Komeda M J Thorac Cardiovasc Surg; 2003 Feb; 125(2):353-60. PubMed ID: 12579105 [TBL] [Abstract][Full Text] [Related]
18. Physiology of the native heart and Thermo Cardiosystems left ventricular assist device complex at rest and during exercise: implications for chronic support. Branch KR; Dembitsky WP; Peterson KL; Adamson R; Gordon JB; Smith SC; Jaski BE J Heart Lung Transplant; 1994; 13(4):641-50; discussion 651. PubMed ID: 7947881 [TBL] [Abstract][Full Text] [Related]
19. Assessment of right pump outflow banding and speed changes on pulmonary hemodynamics during biventricular support with two rotary left ventricular assist devices. Timms D; Gude E; Gaddum N; Lim E; Greatrex N; Wong K; Steinseifer U; Lovell N; Fraser J; Fiane A Artif Organs; 2011 Aug; 35(8):807-13. PubMed ID: 21726243 [TBL] [Abstract][Full Text] [Related]
20. Effects of failure of the right side of the heart and increased pulmonary resistance on mechanical circulatory support with use of the miniaturized HIA-VAD displacement pump system. Waldenberger F; Kim YI; Laycock S; Meyns B; Flameng W J Thorac Cardiovasc Surg; 1996 Aug; 112(2):484-93. PubMed ID: 8751517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]