These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26146999)

  • 1. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings.
    Wong G; Wong I; Chan K; Hsieh Y; Wong S
    PLoS One; 2015; 10(7):e0131701. PubMed ID: 26146999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics.
    Chan K; Wong PY; Yu P; Hardick J; Wong KY; Wilson SA; Wu T; Hui Z; Gaydos C; Wong SS
    PLoS One; 2016; 11(2):e0149150. PubMed ID: 26872358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.
    Chan K; Coen M; Hardick J; Gaydos CA; Wong KY; Smith C; Wilson SA; Vayugundla SP; Wong S
    PLoS One; 2016; 11(6):e0158502. PubMed ID: 27362424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smartphone-operated affordable PCR thermal cycler for the detection of antimicrobial resistant bacterial genes.
    Pudasaini S; Thapa G; Marasini BP; Giri B
    PLOS Glob Public Health; 2023; 3(2):e0001120. PubMed ID: 36962978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Rapid SARS-CoV-2 RT-PCR Assay for Low Resource Settings.
    Arumugam A; Faron ML; Yu P; Markham C; Wu M; Wong S
    Diagnostics (Basel); 2020 Sep; 10(10):. PubMed ID: 32987722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses.
    Saunders GC; Dukes J; Parkes HC; Cornett JH
    Clin Chem; 2001 Jan; 47(1):47-55. PubMed ID: 11148176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip.
    Jeong S; Lim J; Kim MY; Yeom J; Cho H; Lee H; Shin YB; Lee JH
    Biomed Microdevices; 2018 Jan; 20(1):14. PubMed ID: 29376193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PCR microreactor machinery with passive micropump and battery-powered heater for thermo-cycled amplifications of clinical-level and multiplexed DNA targets.
    Shi B; He G; Wu W
    Mikrochim Acta; 2018 Sep; 185(10):467. PubMed ID: 30229474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of thermal cyclers for PCR in a rapid cycling condition.
    Kim YH; Yang I; Bae YS; Park SR
    Biotechniques; 2008 Apr; 44(4):495-6, 498, 500 passim. PubMed ID: 18476814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A large volume, portable, real-time PCR reactor.
    Qiu X; Mauk MG; Chen D; Liu C; Bau HH
    Lab Chip; 2010 Nov; 10(22):3170-7. PubMed ID: 20927453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive Silver/Carbon Fiber Films for Rapid Detection of Human Coronavirus.
    Jeon HG; Choi JW; Lee HU; Chung BG
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel approach for assessing performance of PCR cyclers used for diagnostic testing.
    Schoder D; Schmalwieser A; Schauberger G; Hoorfar J; Kuhn M; Wagner M
    J Clin Microbiol; 2005 Jun; 43(6):2724-8. PubMed ID: 15956389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backpack PCR: A point-of-collection diagnostic platform for the rapid detection of Brugia parasites in mosquitoes.
    Zaky WI; Tomaino FR; Pilotte N; Laney SJ; Williams SA
    PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006962. PubMed ID: 30462640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA.
    Chan K; Wong PY; Parikh C; Wong S
    Anal Biochem; 2018 Mar; 545():4-12. PubMed ID: 29339059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shunting microfluidic PCR device for rapid bacterial detection.
    Salman A; Carney H; Bateson S; Ali Z
    Talanta; 2020 Jan; 207():120303. PubMed ID: 31594577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCR amplification of a triple-repeat genetic target directly from whole blood in 15 minutes as a proof-of-principle PCR study for direct sample analysis for a clinically relevant target.
    Connelly CM; Porter LR; TerMaat JR
    BMC Med Genet; 2014 Dec; 15():130. PubMed ID: 25495904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Cost and Fast Real-Time PCR System Based on Capillary Convection.
    Qiu X; Ge S; Gao P; Li K; Yang Y; Zhang S; Ye X; Xia N; Qian S
    SLAS Technol; 2017 Feb; 22(1):13-17. PubMed ID: 27272156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instrumentation of a PLC-regulated temperature cycler with a PID control unit and its use for miniaturized PCR systems with reduced volumes of aqueous sample droplets isolated in oil phase in a microwell.
    Hashimoto M; Torii M; Yoshida K; Noda K; Tsukagoshi K
    Anal Sci; 2011; 27(12):1191-6. PubMed ID: 22156245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms.
    Butts EL; Vallone PM
    Electrophoresis; 2014 Nov; 35(21-22):3053-61. PubMed ID: 25043912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A handheld real time thermal cycler for bacterial pathogen detection.
    Higgins JA; Nasarabadi S; Karns JS; Shelton DR; Cooper M; Gbakima A; Koopman RP
    Biosens Bioelectron; 2003 Aug; 18(9):1115-23. PubMed ID: 12788554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.