BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26147064)

  • 1. A purification process for heparin and precursor polysaccharides using the pH responsive behavior of chitosan.
    Bhaskar U; Hickey AM; Li G; Mundra RV; Zhang F; Fu L; Cai C; Ou Z; Dordick JS; Linhardt RJ
    Biotechnol Prog; 2015; 31(5):1348-59. PubMed ID: 26147064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial one-pot chemoenzymatic synthesis of heparin.
    Bhaskar U; Li G; Fu L; Onishi A; Suflita M; Dordick JS; Linhardt RJ
    Carbohydr Polym; 2015 May; 122():399-407. PubMed ID: 25817684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor.
    Wang Z; Ly M; Zhang F; Zhong W; Suen A; Hickey AM; Dordick JS; Linhardt RJ
    Biotechnol Bioeng; 2010 Dec; 107(6):964-73. PubMed ID: 20717972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex glycosaminoglycans: profiling substitution patterns by two-dimensional nuclear magnetic resonance spectroscopy.
    Guerrini M; Naggi A; Guglieri S; Santarsiero R; Torri G
    Anal Biochem; 2005 Feb; 337(1):35-47. PubMed ID: 15649373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant Escherichia coli K5 strain with the deletion of waaR gene decreases the molecular weight of the heparosan capsular polysaccharide.
    Huang H; Liu X; Lv S; Zhong W; Zhang F; Linhardt RJ
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7877-85. PubMed ID: 27079575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli K5 heparosan fermentation and improvement by genetic engineering.
    Wang Z; Dordick JS; Linhardt RJ
    Bioeng Bugs; 2011; 2(1):63-7. PubMed ID: 21636991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte multilayer assembly as a function of pH and ionic strength using the polysaccharides chitosan and heparin.
    Boddohi S; Killingsworth CE; Kipper MJ
    Biomacromolecules; 2008 Jul; 9(7):2021-8. PubMed ID: 18564872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the heparosan N-deacetylation leads to an improved bioengineered heparin.
    Wang Z; Yang B; Zhang Z; Ly M; Takieddin M; Mousa S; Liu J; Dordick JS; Linhardt RJ
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):91-9. PubMed ID: 21484210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disaccharide analysis and molecular mass determination to microgram level of single sulfated glycosaminoglycan species in mixtures following agarose-gel electrophoresis.
    Volpi N
    Anal Biochem; 1999 Sep; 273(2):229-39. PubMed ID: 10469494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilized enzymes to convert N-sulfo, N-acetyl heparosan to a critical intermediate in the production of bioengineered heparin.
    Xiong J; Bhaskar U; Li G; Fu L; Li L; Zhang F; Dordick JS; Linhardt RJ
    J Biotechnol; 2013 Sep; 167(3):241-7. PubMed ID: 23835156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a biotechnological heparin through combined chemical and enzymatic modification of the Escherichia coli K5 polysaccharide.
    Naggi A; Torri G; Casu B; Oreste P; Zoppetti G; Li JP; Lindahl U
    Semin Thromb Hemost; 2001 Oct; 27(5):437-43. PubMed ID: 11668413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of non-pathogenic Escherichia coli strains for the controlled production of low molecular weight heparosan and size-specific heparosan oligosaccharides.
    Roy A; Miyai Y; Rossi A; Paraswar K; Desai UR; Saijoh Y; Kuberan B
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129765. PubMed ID: 33069832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of E. coli K5 capsular polysaccharide heparosan.
    Ly M; Wang Z; Laremore TN; Zhang F; Zhong W; Pu D; Zagorevski DV; Dordick JS; Linhardt RJ
    Anal Bioanal Chem; 2011 Jan; 399(2):737-45. PubMed ID: 20407891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response surface optimization of the heparosan N-deacetylation in producing bioengineered heparin.
    Wang Z; Li J; Cheong S; Bhaskar U; Akihiro O; Zhang F; Dordick JS; Linhardt RJ
    J Biotechnol; 2011 Dec; 156(3):188-96. PubMed ID: 21925548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addressing endotoxin issues in bioengineered heparin.
    Suwan J; Torelli A; Onishi A; Dordick JS; Linhardt RJ
    Biotechnol Appl Biochem; 2012; 59(6):420-8. PubMed ID: 23586950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-hour screening of adulterated heparin by simplified peroxide digestion and fast RPIP-LC-MS(2).
    Li H; Wickramasekara S; Nemes P
    Anal Chem; 2015 Aug; 87(16):8424-32. PubMed ID: 26168275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The binding of human betacellulin to heparin, heparan sulfate and related polysaccharides.
    Mummery RS; Mulloy B; Rider CC
    Glycobiology; 2007 Oct; 17(10):1094-103. PubMed ID: 17673511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic production of anticoagulant heparin polysaccharides through metabolic and sulfotransferases engineering strategies.
    Deng JQ; Li Y; Wang YJ; Cao YL; Xin SY; Li XY; Xi RM; Wang FS; Sheng JZ
    Nat Commun; 2024 May; 15(1):3755. PubMed ID: 38704385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of currently marketed heparin products: reversed-phase ion-pairing liquid chromatography mass spectrometry of heparin digests.
    Brustkern AM; Buhse LF; Nasr M; Al-Hakim A; Keire DA
    Anal Chem; 2010 Dec; 82(23):9865-70. PubMed ID: 21069966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel structure in heparin generated by sequential oxidative-reductive treatment.
    Beccati D; Roy S; Lech M; Ozug J; Schaeck J; Gunay NS; Zouaoui R; Capila I; Kaundinya GV
    Anal Chem; 2012 Jun; 84(11):5091-6. PubMed ID: 22624650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.