BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26147120)

  • 1. Comparison of Gene Coexpression Profiles and Construction of Conserved Gene Networks to Find Functional Modules.
    Okamura Y; Obayashi T; Kinoshita K
    PLoS One; 2015; 10(7):e0132039. PubMed ID: 26147120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene coexpression network analysis as a source of functional annotation for rice genes.
    Childs KL; Davidson RM; Buell CR
    PLoS One; 2011; 6(7):e22196. PubMed ID: 21799793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COXPRESdb: a database of coexpressed gene networks in mammals.
    Obayashi T; Hayashi S; Shibaoka M; Saeki M; Ohta H; Kinoshita K
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D77-82. PubMed ID: 17932064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic identification of functional plant modules through the integration of complementary data sources.
    Heyndrickx KS; Vandepoele K
    Plant Physiol; 2012 Jul; 159(3):884-901. PubMed ID: 22589469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATTED-II provides coexpressed gene networks for Arabidopsis.
    Obayashi T; Hayashi S; Saeki M; Ohta H; Kinoshita K
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D987-91. PubMed ID: 18953027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.
    Piro RM; Ala U; Molineris I; Grassi E; Bracco C; Perego GP; Provero P; Di Cunto F
    Eur J Hum Genet; 2011 Nov; 19(11):1173-80. PubMed ID: 21654723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of weighted gene co-expression networks in human and mouse.
    Eidsaa M; Stubbs L; Almaas E
    PLoS One; 2017; 12(11):e0187611. PubMed ID: 29161290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.
    Prieto C; Risueño A; Fontanillo C; De las Rivas J
    PLoS One; 2008; 3(12):e3911. PubMed ID: 19081792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A gene-coexpression network for global discovery of conserved genetic modules.
    Stuart JM; Segal E; Koller D; Kim SK
    Science; 2003 Oct; 302(5643):249-55. PubMed ID: 12934013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global similarity and local divergence in human and mouse gene co-expression networks.
    Tsaparas P; Mariño-Ramírez L; Bodenreider O; Koonin EV; Jordan IK
    BMC Evol Biol; 2006 Sep; 6():70. PubMed ID: 16968540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of common coexpression modules based on quantitative network comparison.
    Jo Y; Kim S; Lee D
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):213. PubMed ID: 29897320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COXPRESdb: a database to compare gene coexpression in seven model animals.
    Obayashi T; Kinoshita K
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D1016-22. PubMed ID: 21081562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COXPRESdb: a database of comparative gene coexpression networks of eleven species for mammals.
    Obayashi T; Okamura Y; Ito S; Tadaka S; Motoike IN; Kinoshita K
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D1014-20. PubMed ID: 23203868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene Coexpression Network and Module Analysis across 52 Human Tissues.
    He B; Xu J; Tian Y; Liao B; Lang J; Lin H; Mo X; Lu Q; Tian G; Bing P
    Biomed Res Int; 2020; 2020():6782046. PubMed ID: 32462012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Module Based Differential Coexpression Analysis Method for Type 2 Diabetes.
    Yuan L; Zheng CH; Xia JF; Huang DS
    Biomed Res Int; 2015; 2015():836929. PubMed ID: 26339648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RiceFREND: a platform for retrieving coexpressed gene networks in rice.
    Sato Y; Namiki N; Takehisa H; Kamatsuki K; Minami H; Ikawa H; Ohyanagi H; Sugimoto K; Itoh J; Antonio BA; Nagamura Y
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D1214-21. PubMed ID: 23180784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction.
    Wang J; Ma Z; Carr SA; Mertins P; Zhang H; Zhang Z; Chan DW; Ellis MJ; Townsend RR; Smith RD; McDermott JE; Chen X; Paulovich AG; Boja ES; Mesri M; Kinsinger CR; Rodriguez H; Rodland KD; Liebler DC; Zhang B
    Mol Cell Proteomics; 2017 Jan; 16(1):121-134. PubMed ID: 27836980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subspace differential coexpression analysis: problem definition and a general approach.
    Fang G; Kuang R; Pandey G; Steinbach M; Myers CL; Kumar V
    Pac Symp Biocomput; 2010; ():145-56. PubMed ID: 19908367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development.
    Vermeirssen V; Joshi A; Michoel T; Bonnet E; Casneuf T; Van de Peer Y
    Mol Biosyst; 2009 Dec; 5(12):1817-30. PubMed ID: 19763340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of candidate target genes for human peripheral arterial disease using weighted gene co‑expression network analysis.
    Yin DX; Zhao HM; Sun DJ; Yao J; Ding DY
    Mol Med Rep; 2015 Dec; 12(6):8107-12. PubMed ID: 26498853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.