These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26147218)

  • 1. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits.
    Marcelletti S; Scortichini M
    PLoS One; 2015; 10(7):e0131112. PubMed ID: 26147218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive remodeling of the Pseudomonas syringae pv. avellanae type III secretome associated with two independent host shifts onto hazelnut.
    O'Brien HE; Thakur S; Gong Y; Fung P; Zhang J; Yuan L; Wang PW; Yong C; Scortichini M; Guttman DS
    BMC Microbiol; 2012 Jul; 12():141. PubMed ID: 22800299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas syringae pv. actinidiae draft genomes comparison reveal strain-specific features involved in adaptation and virulence to Actinidia species.
    Marcelletti S; Ferrante P; Petriccione M; Firrao G; Scortichini M
    PLoS One; 2011; 6(11):e27297. PubMed ID: 22132095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots.
    Sarris PF; Trantas EA; Baltrus DA; Bull CT; Wechter WP; Yan S; Ververidis F; Almeida NF; Jones CD; Dangl JL; Panopoulos NJ; Vinatzer BA; Goumas DE
    PLoS One; 2013; 8(3):e59366. PubMed ID: 23555661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria associated with hazelnut (Corylus avellana L.) decline are of two groups: Pseudomonas avellanae and strains resembling P. syringae pv. syringae.
    Scortichini M; Marchesi U; Rossi MP; Di Prospero P
    Appl Environ Microbiol; 2002 Feb; 68(2):476-84. PubMed ID: 11823181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a.
    Deng WL; Rehm AH; Charkowski AO; Rojas CM; Collmer A
    J Bacteriol; 2003 Apr; 185(8):2592-602. PubMed ID: 12670984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster.
    Sawada H; Suzuki F; Matsuda I; Saitou N
    J Mol Evol; 1999 Nov; 49(5):627-44. PubMed ID: 10552044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas syringae pv. coryli, the Causal Agent of Bacterial Twig Dieback of Corylus avellana.
    Scortichini M; Rossi MP; Loreti S; Bosco A; Fiori M; Jackson RW; Stead DE; Aspin A; Marchesi U; Zini M; Janse JD
    Phytopathology; 2005 Nov; 95(11):1316-24. PubMed ID: 18943363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some strains that have converged to infect Prunus spp. trees are members of distinct Pseudomonas syringae genomospecies and ecotypes as revealed by in silico genomic comparison.
    Marcelletti S; Scortichini M
    Arch Microbiol; 2019 Jan; 201(1):67-80. PubMed ID: 30229267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A draft genome sequence and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae pathovar tabaci 11528.
    Studholme DJ; Ibanez SG; MacLean D; Dangl JL; Chang JH; Rathjen JP
    BMC Genomics; 2009 Aug; 10():395. PubMed ID: 19703286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restriction fragment length polymorphism evidence for genetic homology within a pathovar of Pseudomonas syringae.
    Scholz BK; Jakobek JL; Lindgren PB
    Appl Environ Microbiol; 1994 Apr; 60(4):1093-1100. PubMed ID: 7912500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome sequence analyses of Pseudomonas savastanoi pv. glycinea and subtractive hybridization-based comparative genomics with nine pseudomonads.
    Qi M; Wang D; Bradley CA; Zhao Y
    PLoS One; 2011 Jan; 6(1):e16451. PubMed ID: 21304594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants.
    Alfano JR; Charkowski AO; Deng WL; Badel JL; Petnicki-Ocwieja T; van Dijk K; Collmer A
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4856-61. PubMed ID: 10781092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in conservation of the cluster for biosynthesis of the phytotoxin phaseolotoxin in Pseudomonas syringae suggests at least two events of horizontal acquisition.
    Murillo J; Bardaji L; Navarro de la Fuente L; Führer ME; Aguilera S; Alvarez-Morales A
    Res Microbiol; 2011 Apr; 162(3):253-61. PubMed ID: 21187143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mangotoxin biosynthetic operon (mbo) is specifically distributed within Pseudomonas syringae genomospecies 1 and was acquired only once during evolution.
    Carrión VJ; Gutiérrez-Barranquero JA; Arrebola E; Bardaji L; Codina JC; de Vicente A; Cazorla FM; Murillo J
    Appl Environ Microbiol; 2013 Feb; 79(3):756-67. PubMed ID: 23144138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas savastanoi pv. savastanoi: some like it knot.
    Ramos C; Matas IM; Bardaji L; Aragón IM; Murillo J
    Mol Plant Pathol; 2012 Dec; 13(9):998-1009. PubMed ID: 22805238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of draft genomes of two closely related pseudomonas syringae phylogroup 2b strains infecting mono- and dicotyledon host plants.
    Sultanov RI; Arapidi GP; Vinogradova SV; Govorun VM; Luster DG; Ignatov AN
    BMC Genomics; 2016 Dec; 17(Suppl 14):1010. PubMed ID: 28105943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and relatedness of coronatine-producing Pseudomonas syringae pathovars by PCR analysis and sequence determination of the amplification products.
    Bereswill S; Bugert P; Völksch B; Ullrich M; Bender CL; Geider K
    Appl Environ Microbiol; 1994 Aug; 60(8):2924-30. PubMed ID: 7916181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phylogenomic study of the OCTase genes in Pseudomonas syringae pathovars: the horizontal transfer of the argK-tox cluster and the evolutionary history of OCTase genes on their genomes.
    Sawada H; Kanaya S; Tsuda M; Suzuki F; Azegami K; Saitou N
    J Mol Evol; 2002 Apr; 54(4):437-57. PubMed ID: 11956683
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Gutiérrez-Barranquero JA; Cazorla FM; de Vicente A
    Front Plant Sci; 2019; 10():570. PubMed ID: 31139201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.