These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2614724)

  • 1. Electrophysiological evidence for interhemispheric transmission of visual information in man.
    Berardi N; Bodis-Wollner I; Fiorentini A; Giuffré G; Morelli M
    J Physiol; 1989 Apr; 411():207-25. PubMed ID: 2614724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interhemispheric transfer of visual information in humans: spatial characteristics.
    Berardi N; Fiorentini A
    J Physiol; 1987 Mar; 384():633-47. PubMed ID: 3656157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical contrast gain control in human spatial vision.
    Bobak P; Bodis-Wollner I; Marx MS
    J Physiol; 1988 Nov; 405():421-37. PubMed ID: 3255797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stimulus orientation on spatial frequency function of the visual evoked potential.
    Arakawa K; Tobimatsu S; Kurita-Tashima S; Nakayama M; Kira JI; Kato M
    Exp Brain Res; 2000 Mar; 131(1):121-5. PubMed ID: 10759177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of visual evoked potential and psychophysical contrast sensitivity.
    Seiple W; Kupersmith MJ; Holopigian K
    Int J Neurosci; 1995; 80(1-4):173-80. PubMed ID: 7775047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG coherence studies in the normal brain and after early-onset cortical pathologies.
    Knyazeva MG; Innocenti GM
    Brain Res Brain Res Rev; 2001 Oct; 36(2-3):119-28. PubMed ID: 11690608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transfer of visual information across the corpus callosum: spatial and temporal properties in the cat.
    Berardi N; Bisti S; Maffei L
    J Physiol; 1987 Mar; 384():619-32. PubMed ID: 3656156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial frequency mechanisms in human vision investigated by evoked potential recording.
    Regan D
    Vision Res; 1983; 23(12):1401-7. PubMed ID: 6666040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial frequency and right hemisphere: an electrophysiological investigation.
    Rebaï M; Bernard C; Lannou J; Jouen F
    Brain Cogn; 1998 Feb; 36(1):21-9. PubMed ID: 9500882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extrageniculostriate vision in the monkey. VII. Contrast sensitivity functions.
    Miller M; Pasik P; Pasik T
    J Neurophysiol; 1980 Jun; 43(6):1510-26. PubMed ID: 7411174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interhemispheric transmission of visual information: behavioral and electrophysiologic aspects].
    Fedan VA; Galogazha MM; Liubimoĭ NN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(4):678-86. PubMed ID: 4050108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of corpus callosum for visual receptive fields of single neurons in cat superior colliculus.
    Antonini A; Berlucchi G; Marzi CA; Sprague JM
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):137-52. PubMed ID: 430108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corpus callosum has different channels for transmission of spatial frequency information.
    Kalaycioğlu C; Nalçaci E; Schmiedt-Fehr C; Başar-Eroğlu C
    Brain Res; 2009 Nov; 1296():85-93. PubMed ID: 19686709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of spatial frequency tuned "covariance" channels: individual differences in the electrophysiological (VEP) contrast sensitivity function.
    Peterzell DH; Kelly JP
    Optom Vis Sci; 1997 Oct; 74(10):800-7. PubMed ID: 9383794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal properties of neurons of the lateral suprasylvian cortex of the cat.
    Morrone MC; Di Stefano M; Burr DC
    J Neurophysiol; 1986 Oct; 56(4):969-86. PubMed ID: 3783239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemisphere asymmetry of the visually evoked potentials elicited by gratings of varying spatial frequency.
    Vassilev A; Manahilov V; Mitov D; Nevskaya AA; Leushina LI
    Acta Physiol Pharmacol Bulg; 1991; 17(2-3):54-60. PubMed ID: 1819918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in perceived contrast of suprathreshold gratings as a function of orientation and spatial frequency.
    St John R; Timney B; Armstrong KE; Szpak AB
    Spat Vis; 1987; 2(3):223-32. PubMed ID: 3154948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binocularity in the little owl, Athene noctua. II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings.
    Porciatti V; Fontanesi G; Raffaelli A; Bagnoli P
    Brain Behav Evol; 1990; 35(1):40-8. PubMed ID: 2340414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nasotemporal overlap at the retinal vertical meridian: investigations with a callosotomy patient.
    Fendrich R; Wessinger CM; Gazzaniga MS
    Neuropsychologia; 1996 Jul; 34(7):637-46. PubMed ID: 8783216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.