These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 2614732)

  • 1. Depolarization changes the mechanism of accommodation in rat and human motor axons.
    Baker M; Bostock H
    J Physiol; 1989 Apr; 411():545-61. PubMed ID: 2614732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in excitability and accommodation of human motor axons following brief periods of ischaemia.
    Bostock H; Baker M; Grafe P; Reid G
    J Physiol; 1991 Sep; 441():513-35. PubMed ID: 1816385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and distribution of three types of rectifying channel in rat spinal root myelinated axons.
    Baker M; Bostock H; Grafe P; Martius P
    J Physiol; 1987 Feb; 383():45-67. PubMed ID: 2443652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different effects of blocked potassium channels on action potentials, accommodation, adaptation and anode break excitation in human motor and sensory myelinated nerve fibres: computer simulations.
    Stephanova DI; Mileva K
    Biol Cybern; 2000 Aug; 83(2):161-7. PubMed ID: 10966055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in excitability of human motor axons underlying post-ischaemic fasciculations: evidence for two stable states.
    Bostock H; Baker M; Reid G
    J Physiol; 1991 Sep; 441():537-57. PubMed ID: 1667800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of human sensory and motor axons to the release of ischaemia and to hyperpolarizing currents.
    Lin CS; Kuwabara S; Cappelen-Smith C; Burke D
    J Physiol; 2002 Jun; 541(Pt 3):1025-39. PubMed ID: 12068060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in behaviour of sensory and motor axons following release of ischaemia.
    Bostock H; Burke D; Hales JP
    Brain; 1994 Apr; 117 ( Pt 2)():225-34. PubMed ID: 8186950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent excitability changes in normal and demyelinated rat spinal root axons.
    Bostock H; Grafe P
    J Physiol; 1985 Aug; 365():239-57. PubMed ID: 4032313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed depolarization and slow sodium currents in cutaneous afferents.
    Honmou O; Utzschneider DA; Rizzo MA; Bowe CM; Waxman SG; Kocsis JD
    J Neurophysiol; 1994 May; 71(5):1627-37. PubMed ID: 8064338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic activity in demyelinated spinal root axons of the rat.
    Baker M; Bostock H
    J Physiol; 1992; 451():539-52. PubMed ID: 1403824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for two types of potassium channel in human motor axons in vivo.
    Bostock H; Baker M
    Brain Res; 1988 Oct; 462(2):354-8. PubMed ID: 3191395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The voltage dependence of I(h) in human myelinated axons.
    Howells J; Trevillion L; Bostock H; Burke D
    J Physiol; 2012 Apr; 590(7):1625-40. PubMed ID: 22310314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons.
    Sah P; McLachlan EM
    J Neurophysiol; 1992 Nov; 68(5):1834-41. PubMed ID: 1336045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Threshold behaviour of human axons explored using subthreshold perturbations to membrane potential.
    Burke D; Howells J; Trevillion L; McNulty PA; Jankelowitz SK; Kiernan MC
    J Physiol; 2009 Jan; 587(2):491-504. PubMed ID: 19047204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a persistent potassium current in neostriatal neurons.
    Nisenbaum ES; Wilson CJ; Foehring RC; Surmeier DJ
    J Neurophysiol; 1996 Aug; 76(2):1180-94. PubMed ID: 8871229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A voltage- and time-dependent rectification in rat dorsal spinal root axons.
    Birch BD; Kocsis JD; Di Gregorio F; Bhisitkul RB; Waxman SG
    J Neurophysiol; 1991 Sep; 66(3):719-28. PubMed ID: 1661325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences between mammalian ventral and dorsal spinal roots in response to blockade of potassium channels during maturation.
    Bowe CM; Kocsis JD; Waxman SG
    Proc R Soc Lond B Biol Sci; 1985 May; 224(1236):355-66. PubMed ID: 2410932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outwardly rectifying deflections in threshold electrotonus due to K+ conductances.
    Trevillion L; Howells J; Burke D
    J Physiol; 2007 Apr; 580(Pt. 2):685-96. PubMed ID: 17272346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals.
    Morita K; David G; Barrett JN; Barrett EF
    J Neurophysiol; 1993 Nov; 70(5):1874-84. PubMed ID: 8294960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.