These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26147357)

  • 1. Enhanced-fluidity liquid chromatography using mixed-mode hydrophilic interaction liquid chromatography/strong cation-exchange retention mechanisms.
    Beres MJ; Olesik SV
    J Sep Sci; 2015 Sep; 38(18):3119-3129. PubMed ID: 26147357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A "green" technique.
    Beilke MC; Beres MJ; Olesik SV
    J Chromatogr A; 2016 Mar; 1436():84-90. PubMed ID: 26860052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of enhanced-fluidity liquid hydrophilic interaction chromatography for the separation of nucleosides and nucleotides.
    Philibert GS; Olesik SV
    J Chromatogr A; 2011 Nov; 1218(45):8222-30. PubMed ID: 21974894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient separation of oligosaccharides and suppressing anomeric mutarotation with enhanced-fluidity liquid hydrophilic interaction chromatography.
    Bennett R; Olesik SV
    Anal Chim Acta; 2017 Apr; 960():151-159. PubMed ID: 28193358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced fluidity liquid chromatography for hydrophilic interaction separation of nucleosides.
    Treadway JW; Philibert GS; Olesik SV
    J Chromatogr A; 2011 Sep; 1218(35):5897-902. PubMed ID: 21236439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatography of substituted benzoic acids with methanol-water-carbon dioxide mixtures.
    Wen D; Olesik SV
    J Chromatogr A; 2001 Oct; 931(1-2):41-52. PubMed ID: 11695520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein separations using enhanced-fluidity liquid chromatography.
    Bennett R; Olesik SV
    J Chromatogr A; 2017 Nov; 1523():257-264. PubMed ID: 28756890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong cation- and zwitterion-exchange-type mixed-mode stationary phases for separation of pharmaceuticals and biogenic amines in different chromatographic modes.
    Wolrab D; Frühauf P; Kolderová N; Kohout M
    J Chromatogr A; 2021 Jan; 1635():461751. PubMed ID: 33285414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green hydrophilic interaction chromatography using ethanol-water-carbon dioxide mixtures.
    Pereira Ados S; Girón AJ; Admasu E; Sandra P
    J Sep Sci; 2010 Mar; 33(6-7):834-7. PubMed ID: 20222079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings.
    Bicker W; Wu J; Lämmerhofer M; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of water on the retention on diol and amide columns in hydrophilic interaction liquid chromatography.
    Jandera P; Janás P; Škeříková V; Urban J
    J Sep Sci; 2017 Apr; 40(7):1434-1448. PubMed ID: 28133899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversed-phase separation of basic tricyclic antidepressants using buffered and fluoroform-enhanced fluidity liquid mobile phases.
    Zhao J; Olesik SV
    J Chromatogr A; 2001 Jul; 923(1-2):107-17. PubMed ID: 11510533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening strategies for achiral supercritical fluid chromatography employing hydrophilic interaction liquid chromatography-like parameters.
    Ashraf-Khorassani M; Taylor LT; Seest E
    J Chromatogr A; 2012 Mar; 1229():237-48. PubMed ID: 22305359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited.
    Jandera P; Hájek T; Šromová Z
    J Chromatogr A; 2018 Mar; 1543():48-57. PubMed ID: 29486886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A crosslinked, low pH-stable, mixed-mode cation-exchange like stationary phase made using the thiol-yne click reaction.
    Shields EP; Weber SG
    J Chromatogr A; 2020 May; 1618():460851. PubMed ID: 32008826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stationary and mobile phases in hydrophilic interaction chromatography: a review.
    Jandera P
    Anal Chim Acta; 2011 Apr; 692(1-2):1-25. PubMed ID: 21501708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutathione-based zwitterionic stationary phase for hydrophilic interaction/cation-exchange mixed-mode chromatography.
    Shen A; Li X; Dong X; Wei J; Guo Z; Liang X
    J Chromatogr A; 2013 Nov; 1314():63-9. PubMed ID: 24075460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry.
    Apfelthaler E; Bicker W; Lämmerhofer M; Sulyok M; Krska R; Lindner W; Schuhmacher R
    J Chromatogr A; 2008 May; 1191(1-2):171-81. PubMed ID: 18199445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds.
    Urban J; Skeríková V; Jandera P; Kubícková R; Pospísilová M
    J Sep Sci; 2009 Aug; 32(15-16):2530-43. PubMed ID: 19585529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methacrylate-based monolithic column with mixed-mode hydrophilic interaction/strong cation-exchange stationary phase for capillary liquid chromatography and pressure-assisted CEC.
    Lin J; Huang G; Lin X; Xie Z
    Electrophoresis; 2008 Oct; 29(19):4055-65. PubMed ID: 18958876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.