These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26147506)

  • 1. Experimental and Theoretical Investigation of Crystallographic Orientation Dependence of Nanoscratching of Single Crystalline Copper.
    Geng Y; Zhang J; Yan Y; Yu B; Geng L; Sun T
    PLoS One; 2015; 10(7):e0131886. PubMed ID: 26147506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic orientation-dependent pattern replication in direct imprint of aluminum nanostructures.
    Yuan Y; Zhang J; Sun T; Liu C; Geng Y; Yan Y; Jin P
    Nanoscale Res Lett; 2015; 10():96. PubMed ID: 25852392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic and Experimental Investigation of the Effect of Depth of Cut on Diamond Cutting of Cerium.
    Zhang J; Shuai M; Zheng H; Li Y; Jin M; Sun T
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Dynamics Investigation of Residual Stress and Surface Roughness of Cerium under Diamond Cutting.
    Li Y; Shuai M; Zhang J; Zheng H; Sun T; Yang Y
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamic simulation for nanometric cutting of single-crystal face-centered cubic metals.
    Huang Y; Zong W
    Nanoscale Res Lett; 2014; 9(1):622. PubMed ID: 25426007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic Simulation Study of Nanoparticle Effect on Nano-Cutting Mechanisms of Single-Crystalline Materials.
    Zhao P; Zhang Q; Guo Y; Liu H; Deng Z
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Modeling and Simulation of Diamond Cutting of Cerium.
    Zhang J; Zheng H; Shuai M; Li Y; Yang Y; Sun T
    Nanoscale Res Lett; 2017 Dec; 12(1):464. PubMed ID: 28747045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation Mechanisms and Remarkable Strain Hardening in Single-Crystalline High-Entropy-Alloy Micropillars/Nanopillars.
    Zhang Q; Huang R; Zhang X; Cao T; Xue Y; Li X
    Nano Lett; 2021 Apr; 21(8):3671-3679. PubMed ID: 33756077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic shock responses of nanoporous Al by molecular dynamics simulations.
    Tian X; Ma K; Ji G; Cui J; Liao Y; Xiang M
    PLoS One; 2021; 16(3):e0247172. PubMed ID: 33730074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-dependent fracture mode transition in copper nanowires.
    Peng C; Zhan Y; Lou J
    Small; 2012 Jun; 8(12):1889-94. PubMed ID: 22461261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical investigation on the influence of temperature and crystallographic orientation on the breaking behavior of copper nanowire.
    Liu Y; Wang F; Zhao J; Jiang L; Kiguchi M; Murakoshi K
    Phys Chem Chem Phys; 2009 Aug; 11(30):6514-9. PubMed ID: 19809684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Plastic Deformation Mechanisms of hcp Single Crystals with Different Orientations: Molecular Dynamics Simulations.
    Ma ZC; Tang XZ; Mao Y; Guo YF
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of nanoscratch processes in semiconductor materials for application to maskless patterning.
    Richter A; Kuswik P; Oszwaldowski M; Smith R
    J Nanosci Nanotechnol; 2008 Jun; 8(6):3020-9. PubMed ID: 18681041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Crystalline Anisotropy and Indenter Size on Nanoindentation by Multiscale Simulation.
    Li J; Ni Y; Wang H; Mei J
    Nanoscale Res Lett; 2009 Nov; 5(2):420-32. PubMed ID: 20672077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Sample Size and Crystal Orientation on the Fatigue Behaviour of Single Crystalline Microbeams.
    Rafael Velayarce J; Motz C
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32041211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Cu(4) <--> Cu(6) core interconversion and temperature induced single-crystal-to-single-crystal phase transition for copper(I) carboxylate.
    Filatov AS; Hietsoi O; Sevryugina Y; Gerasimchuk NN; Petrukhina MA
    Inorg Chem; 2010 Feb; 49(4):1626-33. PubMed ID: 20067274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Investigation of the Work Hardening Behavior in Interrupted Cutting Inconel 718 under Cryogenic Conditions.
    Dai X; Zhuang K; Pu D; Zhang W; Ding H
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32403324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal growth of para-sexiphenyl on clean and oxygen reconstructed Cu(110) surfaces.
    Novák J; Oehzelt M; Berkebile S; Koini M; Ules T; Koller G; Haber T; Resel R; Ramsey MG
    Phys Chem Chem Phys; 2011 Aug; 13(32):14675-84. PubMed ID: 21748174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dislocation multi-junctions and strain hardening.
    Bulatov VV; Hsiung LL; Tang M; Arsenlis A; Bartelt MC; Cai W; Florando JN; Hiratani M; Rhee M; Hommes G; Pierce TG; de la Rubia TD
    Nature; 2006 Apr; 440(7088):1174-8. PubMed ID: 16641992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation.
    Zhang L; Huang H; Zhao H; Ma Z; Yang Y; Hu X
    Nanoscale Res Lett; 2013 May; 8(1):211. PubMed ID: 23641932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.