These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26147603)

  • 21. Convergent results in eyeblink conditioning and contingency learning in humans: addition of a common cue does not affect feature-negative discriminations.
    Thorwart A; Glautier S; Lachnit H
    Biol Psychol; 2010 Oct; 85(2):207-12. PubMed ID: 20638441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The importance of the rat hippocampus for learning the structure of visual arrays.
    Sanderson DJ; Pearce JM; Kyd RJ; Aggleton JP
    Eur J Neurosci; 2006 Sep; 24(6):1781-8. PubMed ID: 17004941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neurotoxic lesions of the rat perirhinal and postrhinal cortices and their impact on biconditional visual discrimination tasks.
    Davies M; Machin PE; Sanderson DJ; Pearce JM; Aggleton JP
    Behav Brain Res; 2007 Jan; 176(2):274-83. PubMed ID: 17092577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What is learned in patterning discriminations? Further tests of configural accounts of associative learning in human electrodermal conditioning.
    Lachnit H; Lober K
    Biol Psychol; 2001 Mar; 56(1):45-61. PubMed ID: 11240314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the representation of novel stimuli in patterning and irrelevant cue discriminations.
    Whitlow JW
    J Exp Psychol Anim Learn Cogn; 2018 Jul; 44(3):322-339. PubMed ID: 29847984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location.
    Albasser MM; Dumont JR; Amin E; Holmes JD; Horne MR; Pearce JM; Aggleton JP
    Hippocampus; 2013 Dec; 23(12):1162-78. PubMed ID: 23749378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relational rule discovery in complex discrimination learning.
    Don HJ; Goldwater MB; Greenaway JK; Hutchings R; Livesey EJ
    J Exp Psychol Learn Mem Cogn; 2020 Oct; 46(10):1807-1827. PubMed ID: 32364402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Positive and negative patterning in human causal learning.
    Young ME; Wasserman EA; Johnson JL; Jones FL
    Q J Exp Psychol B; 2000 May; 53(2):121-38. PubMed ID: 10881604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selective importance of the rat anterior thalamic nuclei for configural learning involving distal spatial cues.
    Dumont JR; Amin E; Aggleton JP
    Eur J Neurosci; 2014 Jan; 39(2):241-56. PubMed ID: 24215178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discriminating the stimulus elements during human odor-taste learning: a successful analytic stance does not eliminate learning.
    Stevenson RJ; Mahmut MK
    J Exp Psychol Anim Behav Process; 2011 Oct; 37(4):477-82. PubMed ID: 22003966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of using stimuli from three different dimensions on autoshaping with a complex negative patterning discrimination.
    Pearce JM; George DN
    Q J Exp Psychol B; 2002 Oct; 55(4):349-64. PubMed ID: 12350286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing elemental and configural associative theories in human causal learning: a case for attention.
    Lachnit H; Schultheis H; König S; Ungör M; Melchers K
    J Exp Psychol Anim Behav Process; 2008 Apr; 34(2):303-13. PubMed ID: 18426312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hippocampal theta wave activity during configural and non-configural tasks in rats.
    Sakimoto Y; Hattori M; Takeda K; Okada K; Sakata S
    Exp Brain Res; 2013 Mar; 225(2):177-85. PubMed ID: 23224700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of the hippocampal theta rhythm in non-spatial discrimination and associative learning task.
    Sakimoto Y; Sakata S
    Neurosci Biobehav Rev; 2020 Mar; 110():92-99. PubMed ID: 30261198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Configural learning in human Pavlovian conditioning: acquisition of a biconditional discrimination.
    Lober K; Lachnit H
    Biol Psychol; 2002 Mar; 59(2):163-8. PubMed ID: 11911938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perceptual learning with complex visual stimuli is based on location, rather than content, of discriminating features.
    Jones SP; Dwyer DM
    J Exp Psychol Anim Behav Process; 2013 Apr; 39(2):152-65. PubMed ID: 23421396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations.
    Devaud JM; Papouin T; Carcaud J; Sandoz JC; Grünewald B; Giurfa M
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):E5854-62. PubMed ID: 26460021
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A computational implementation of a Hebbian learning network and its application to configural forms of acquired equivalence.
    Robinson J; George DN; Heinke D
    J Exp Psychol Anim Learn Cogn; 2019 Jul; 45(3):356-371. PubMed ID: 31282722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SSCC TD: a serial and simultaneous configural-cue compound stimuli representation for temporal difference learning.
    Mondragón E; Gray J; Alonso E; Bonardi C; Jennings DJ
    PLoS One; 2014; 9(7):e102469. PubMed ID: 25054799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transverse patterning reveals a dissociation of simple and configural association learning abilities in rats with 192 IgG-saporin lesions of the nucleus basalis magnocellularis.
    Butt AE; Bowman TD
    Neurobiol Learn Mem; 2002 Mar; 77(2):211-33. PubMed ID: 11848720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.