BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26147655)

  • 1. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.
    Philip A; Ferro VA; Tate RJ
    Mol Nutr Food Res; 2015 Oct; 59(10):1962-72. PubMed ID: 26147655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High degradation and no bioavailability of artichoke miRNAs assessed using an in vitro digestion/Caco-2 cell model.
    Cavallini A; Minervini F; Garbetta A; Lippolis C; Scamarcio G; Di Franco C; D'Alessandro R
    Nutr Res; 2018 Dec; 60():68-76. PubMed ID: 30527261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of MicroRNAs in Response to Different Day Lengths in Soybean Using High-Throughput Sequencing and qRT-PCR.
    Li W; Wang P; Li Y; Zhang K; Ding F; Nie T; Yang X; Lv Q; Zhao L
    PLoS One; 2015; 10(7):e0132621. PubMed ID: 26162069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive Degradation and Low Bioavailability of Orally Consumed Corn miRNAs in Mice.
    Huang H; Davis CD; Wang TTY
    Nutrients; 2018 Feb; 10(2):. PubMed ID: 29462875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNAs in the shoot apical meristem of soybean.
    Wong CE; Zhao YT; Wang XJ; Croft L; Wang ZH; Haerizadeh F; Mattick JS; Singh MB; Carroll BJ; Bhalla PL
    J Exp Bot; 2011 May; 62(8):2495-506. PubMed ID: 21504877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel and conserved microRNAs in soybean floral whorls.
    Kulcheski FR; Molina LG; da Fonseca GC; de Morais GL; de Oliveira LF; Margis R
    Gene; 2016 Jan; 575(2 Pt 1):213-23. PubMed ID: 26341053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing.
    Sun Z; He Y; Li J; Wang X; Chen J
    Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyses of a Glycine max degradome library identify microRNA targets and microRNAs that trigger secondary siRNA biogenesis.
    Hu Z; Jiang Q; Ni Z; Chen R; Xu S; Zhang H
    J Integr Plant Biol; 2013 Feb; 55(2):160-76. PubMed ID: 23131131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs.
    Witwer KW; McAlexander MA; Queen SE; Adams RJ
    RNA Biol; 2013 Jul; 10(7):1080-6. PubMed ID: 23770773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
    Bonnet E; Wuyts J; Rouzé P; Van de Peer Y
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11511-6. PubMed ID: 15272084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of microRNAs as reference genes for quantitative polymerase chain reaction in soybean.
    Kulcheski FR; Marcelino-Guimaraes FC; Nepomuceno AL; Abdelnoor RV; Margis R
    Anal Biochem; 2010 Nov; 406(2):185-92. PubMed ID: 20670612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments.
    Laparra JM; Vélez D; Barberá R; Farré R; Montoro R
    J Agric Food Chem; 2005 Nov; 53(22):8829-33. PubMed ID: 16248591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of dietetically absorbed maize-derived microRNAs in pigs.
    Luo Y; Wang P; Wang X; Wang Y; Mu Z; Li Q; Fu Y; Xiao J; Li G; Ma Y; Gu Y; Jin L; Ma J; Tang Q; Jiang A; Li X; Li M
    Sci Rep; 2017 Apr; 7(1):645. PubMed ID: 28381865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and Characterization of ABA-Responsive MicroRNAs in Rice.
    Tian C; Zuo Z; Qiu JL
    J Genet Genomics; 2015 Jul; 42(7):393-402. PubMed ID: 26233894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of potential novel microRNAs in soybean when in symbiosis.
    Barros-Carvalho GA; Paschoal AR; Marcelino-Guimarães FC; Hungria M
    Genet Mol Res; 2014 Oct; 13(4):8519-29. PubMed ID: 25366746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of regulatory mechanism of Poncirus trifoliata microRNAs on their target genes with an integrated strategy of newly developed PPM-RACE and RLM-RACE.
    Shangguan L; Song C; Han J; Leng X; Kibet KN; Mu Q; Kayesh E; Fang J
    Gene; 2014 Feb; 535(1):42-52. PubMed ID: 24275346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of 23 novel conserved microRNAs in three rice cultivars.
    Yang J; Zhang HM; Liu XY; Li J; Lv MF; Li PP; Dai LY; Chen JP
    Gene; 2014 Sep; 548(2):285-93. PubMed ID: 25038275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice.
    Jiang D; Yin C; Yu A; Zhou X; Liang W; Yuan Z; Xu Y; Yu Q; Wen T; Zhang D
    Cell Res; 2006 May; 16(5):507-18. PubMed ID: 16699546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice.
    Sharma D; Tiwari M; Lakhwani D; Tripathi RD; Trivedi PK
    Metallomics; 2015 Jan; 7(1):174-87. PubMed ID: 25474357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing.
    Wang Z; Jiang D; Zhang C; Tan H; Li Y; Lv S; Hou X; Cui X
    Gene; 2015 Oct; 571(2):178-87. PubMed ID: 26115771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.