These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 26147655)

  • 21. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variability in microRNA recovery from plasma: Comparison of five commercial kits.
    Brunet-Vega A; Pericay C; Quílez ME; Ramírez-Lázaro MJ; Calvet X; Lario S
    Anal Biochem; 2015 Nov; 488():28-35. PubMed ID: 26271186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules.
    Wang Y; Li P; Cao X; Wang X; Zhang A; Li X
    Biochem Biophys Res Commun; 2009 Jan; 378(4):799-803. PubMed ID: 19084500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on Transboundary Regulation of Plant-Derived Exogenous MiRNA Based on Biological Big Data.
    Li Z; Wei X; Li S; Zhao J; Li X; Zhu L
    J Healthc Eng; 2021; 2021():6656763. PubMed ID: 33604010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of the highly accumulated microRNA*s in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa).
    Shao C; Ma X; Xu X; Meng Y
    Gene; 2013 Feb; 515(1):123-7. PubMed ID: 23201415
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation.
    Sanchita ; Trivedi R; Asif MH; Trivedi PK
    RNA Biol; 2018; 15(12):1433-1439. PubMed ID: 30474479
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability and absorption mechanism of typical plant miRNAs in an in vitro gastrointestinal environment: basis for their cross-kingdom nutritional effects.
    Wang X; Ren X; Ning L; Wang P; Xu K
    J Nutr Biochem; 2020 Jul; 81():108376. PubMed ID: 32330841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flexible microRNA arm selection in rice.
    Hu W; Wang T; Yue E; Zheng S; Xu JH
    Biochem Biophys Res Commun; 2014 May; 447(3):526-30. PubMed ID: 24746469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression.
    Díez-Sainz E; Milagro FI; Aranaz P; Riezu-Boj JI; Lorente-Cebrián S
    J Physiol Biochem; 2024 Apr; ():. PubMed ID: 38662188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Application of bionic technology to speciation analysis and bioavailability assessment of nickel in transgenic soybean].
    Chen LH; Li SX; Mou Y; Zheng FY; Li YC; Wang H; Zheng NY; Xie HF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3075-8. PubMed ID: 24555384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant microRNA: a small regulatory molecule with big impact.
    Zhang B; Pan X; Cobb GP; Anderson TA
    Dev Biol; 2006 Jan; 289(1):3-16. PubMed ID: 16325172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma.
    Liang H; Zhang S; Fu Z; Wang Y; Wang N; Liu Y; Zhao C; Wu J; Hu Y; Zhang J; Chen X; Zen K; Zhang CY
    J Nutr Biochem; 2015 May; 26(5):505-12. PubMed ID: 25704478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of microRNA gene resources in the improvement of agronomic traits in rice.
    Zheng LL; Qu LH
    Plant Biotechnol J; 2015 Apr; 13(3):329-36. PubMed ID: 25583449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anomalous uptake and circulatory characteristics of the plant-based small RNA MIR2911.
    Yang J; Hotz T; Broadnax L; Yarmarkovich M; Elbaz-Younes I; Hirschi KD
    Sci Rep; 2016 Jun; 6():26834. PubMed ID: 27251858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A network analysis of miRNA mediated gene regulation of rice: crosstalk among biological processes.
    Mal C; Deb A; Aftabuddin M; Kundu S
    Mol Biosyst; 2015 Aug; 11(8):2273-80. PubMed ID: 26066638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: underestimated effects of contamination in NGS.
    Tosar JP; Rovira C; Naya H; Cayota A
    RNA; 2014 Jun; 20(6):754-7. PubMed ID: 24729469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Digestion of Plant Dietary miRNAs Starts in the Mouth under the Protection of Coingested Food Components and Plant-Derived Exosome-like Nanoparticles.
    Qin X; Wang X; Xu K; Zhang Y; Ren X; Qi B; Liang Q; Yang X; Li L; Li S
    J Agric Food Chem; 2022 Apr; 70(14):4316-4327. PubMed ID: 35352925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist.
    Witwer KW; Hirschi KD
    Bioessays; 2014 Apr; 36(4):394-406. PubMed ID: 24436255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates.
    Jia M; He J; Bai W; Lin Q; Deng J; Li W; Bai J; Fu D; Ma Y; Ren J; Xiong S
    Food Funct; 2021 Oct; 12(20):9549-9562. PubMed ID: 34664582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The atypical genesis and bioavailability of the plant-based small RNA MIR2911: Bulking up while breaking down.
    Yang J; Kongchan N; Primo Planta C; Neilson JR; Hirschi KD
    Mol Nutr Food Res; 2017 Sep; 61(9):. PubMed ID: 28319645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.