These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26147899)

  • 1. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis.
    Wuithschick M; Birnbaum A; Witte S; Sztucki M; Vainio U; Pinna N; Rademann K; Emmerling F; Kraehnert R; Polte J
    ACS Nano; 2015 Jul; 9(7):7052-71. PubMed ID: 26147899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of latent heat in boiling water on the synthesis of gold nanoparticles of different sizes by using the Turkevich method.
    Ding W; Zhang P; Li Y; Xia H; Wang D; Tao X
    Chemphyschem; 2015 Feb; 16(2):447-54. PubMed ID: 25393528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turkevich method for gold nanoparticle synthesis revisited.
    Kimling J; Maier M; Okenve B; Kotaidis V; Ballot H; Plech A
    J Phys Chem B; 2006 Aug; 110(32):15700-7. PubMed ID: 16898714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation.
    Polte J; Ahner TT; Delissen F; Sokolov S; Emmerling F; Thünemann AF; Kraehnert R
    J Am Chem Soc; 2010 Feb; 132(4):1296-301. PubMed ID: 20102229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question.
    Shi L; Buhler E; Boué F; Carn F
    J Colloid Interface Sci; 2017 Apr; 492():191-198. PubMed ID: 28109820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.
    Bastús NG; Comenge J; Puntes V
    Langmuir; 2011 Sep; 27(17):11098-105. PubMed ID: 21728302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model for Gold Nanoparticle Synthesis: Effect of pH and Reaction Time.
    Yazdani S; Daneshkhah A; Diwate A; Patel H; Smith J; Reul O; Cheng R; Izadian A; Hajrasouliha AR
    ACS Omega; 2021 Jul; 6(26):16847-16853. PubMed ID: 34250344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Facile pH Controlled Citrate-Based Reduction Method for Gold Nanoparticle Synthesis at Room Temperature.
    Tyagi H; Kushwaha A; Kumar A; Aslam M
    Nanoscale Res Lett; 2016 Dec; 11(1):362. PubMed ID: 27526178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monodisperse sub-10 nm gold nanoparticles by reversing the order of addition in Turkevich method--the role of chloroauric acid.
    Sivaraman SK; Kumar S; Santhanam V
    J Colloid Interface Sci; 2011 Sep; 361(2):543-7. PubMed ID: 21719021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Little adjustments significantly improve the Turkevich synthesis of gold nanoparticles.
    Schulz F; Homolka T; Bastús NG; Puntes V; Weller H; Vossmeyer T
    Langmuir; 2014 Sep; 30(35):10779-84. PubMed ID: 25127436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic insights of the reduction of gold salts in the Turkevich protocol.
    Gao Y; Torrente-Murciano L
    Nanoscale; 2020 Jan; 12(4):2740-2751. PubMed ID: 31950962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregative growth in the size-controlled growth of monodispersed gold nanoparticles.
    Njoki PN; Luo J; Kamundi MM; Lim S; Zhong CJ
    Langmuir; 2010 Aug; 26(16):13622-9. PubMed ID: 20695612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method.
    Perala SR; Kumar S
    Langmuir; 2013 Aug; 29(31):9863-73. PubMed ID: 23848382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Gold Nanoparticles from Gold Coatings Recovered from E-Waste Processors.
    Su-Gallegos J; Magallón-Cacho L; Ramírez-Aparicio J; Borja-Arco E
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of gold Nanoshells through Improved Seed-Mediated Growth Approach: Brust-like, in Situ Seed Formation.
    Gao Y; Gu J; Li L; Zhao W; Li Y
    Langmuir; 2016 Mar; 32(9):2251-8. PubMed ID: 26862881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH Dependence of the size and crystallographic orientation of the gold nanoparticles prepared by seed-mediated growth.
    Rahman MR; Saleh FS; Okajima T; Ohsaka T
    Langmuir; 2011 Apr; 27(8):5126-35. PubMed ID: 21410194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time monitoring of copolymer stabilized growing gold nanoparticles.
    Polte J; Emmerling F; Radtke M; Reinholz U; Riesemeier H; Thünemann AF
    Langmuir; 2010 Apr; 26(8):5889-94. PubMed ID: 20085232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation mechanism of nonspherical gold nanoparticles during seeding growth: roles of anion adsorption and reduction rate.
    Cao L; Zhu T; Liu Z
    J Colloid Interface Sci; 2006 Jan; 293(1):69-76. PubMed ID: 16019023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of monomer feeding on a fast gold nanoparticles synthesis: time-resolved XANES and SAXS experiments.
    Abécassis B; Testard F; Kong Q; Francois B; Spalla O
    Langmuir; 2010 Sep; 26(17):13847-54. PubMed ID: 20704344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox decomposition of silver citrate complex in nanoscale confinement: an unusual mechanism of formation and growth of silver nanoparticles.
    Patra S; Pandey AK; Sen D; Ramagiri SV; Bellare JR; Mazumder S; Goswami A
    Langmuir; 2014 Mar; 30(9):2460-9. PubMed ID: 24533743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.