These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26148130)

  • 41. Diet selection in the Coyote
    Hayward MW; Mitchell CD; Kamler JF; Rippon P; Heit DR; Nams V; Montgomery RA
    J Mammal; 2023 Dec; 104(6):1338-1352. PubMed ID: 38059008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Demographic history influences spatial patterns of genetic diversityin recently expanded coyote (Canis latrans) populations.
    Heppenheimer E; Cosio DS; Brzeski KE; Caudill D; Van Why K; Chamberlain MJ; Hinton JW; vonHoldt B
    Heredity (Edinb); 2018 Mar; 120(3):183-195. PubMed ID: 29269931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Urbanization, Grassland, and Diet Influence Coyote (Canis latrans) Parasitism Structure.
    Watts AG; Lukasik VM; Fortin MJ; Alexander SM
    Ecohealth; 2015 Dec; 12(4):645-59. PubMed ID: 26122205
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scent-marking by coyotes, Canis latrans: the influence of social and ecological factors.
    Gese EM; Ruff RL
    Anim Behav; 1997 Nov; 54(5):1155-66. PubMed ID: 9398369
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Do coyotes
    Jones BM; Cove MV; Lashley MA; Jackson VL
    Curr Zool; 2016 Feb; 62(1):1-6. PubMed ID: 29491884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Home ranges and movements of resident graylag geese (Anser anser) in breeding and winter habitats in Bavaria, South Germany.
    Kleinhenz A; Koenig A
    PLoS One; 2018; 13(9):e0202443. PubMed ID: 30222745
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans).
    Adams JR; Kelly BT; Waits LP
    Mol Ecol; 2003 Aug; 12(8):2175-86. PubMed ID: 12859637
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Seasonal and daily shifts in behavior and resource selection: how a carnivore navigates costly landscapes.
    Ellington EH; Muntz EM; Gehrt SD
    Oecologia; 2020 Oct; 194(1-2):87-100. PubMed ID: 32939575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A multi-state occupancy model to non-invasively monitor visible signs of wildlife health with camera traps that accounts for image quality.
    Murray MH; Fidino M; Lehrer EW; Simonis JL; Magle SB
    J Anim Ecol; 2021 Aug; 90(8):1973-1984. PubMed ID: 33942308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A continental scale trophic cascade from wolves through coyotes to foxes.
    Newsome TM; Ripple WJ
    J Anim Ecol; 2015 Jan; 84(1):49-59. PubMed ID: 24930631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring coyote population dynamics by genotyping faeces.
    Prugh LR; Ritland CE; Arthur SM; Krebs CJ
    Mol Ecol; 2005 Apr; 14(5):1585-96. PubMed ID: 15813796
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coyote (Canis latrans) mammalian prey diet shifts in response to seasonal vegetation change.
    Seamster VA; Waits LP; Macko SA; Shugart HH
    Isotopes Environ Health Stud; 2014; 50(3):343-60. PubMed ID: 24999056
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Population ecology of free-roaming cats and interference competition by coyotes in urban parks.
    Gehrt SD; Wilson EC; Brown JL; Anchor C
    PLoS One; 2013; 8(9):e75718. PubMed ID: 24058699
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial variation in diet-microbe associations across populations of a generalist North American carnivore.
    Colborn AS; Kuntze CC; Gadsden GI; Harris NC
    J Anim Ecol; 2020 Aug; 89(8):1952-1960. PubMed ID: 32445202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prey-mediated avoidance of an intraguild predator by its intraguild prey.
    Wilson RR; Blankenship TL; Hooten MB; Shivik JA
    Oecologia; 2010 Dec; 164(4):921-9. PubMed ID: 20953798
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The trade-off between fix rate and tracking duration on estimates of home range size and habitat selection for small vertebrates.
    Mitchell LJ; White PCL; Arnold KE
    PLoS One; 2019; 14(7):e0219357. PubMed ID: 31291318
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Endocranial Development in the Coyote (Canis latrans) and Gray Wolf (Canis lupus): A Computed Tomographic Study.
    Sakai ST; Whitt B; Arsznov BM; Lundrigan BL
    Brain Behav Evol; 2018; 91(2):65-81. PubMed ID: 29635246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Climatic amplification of the numerical response of a predator population to its prey.
    Bowler B; Krebs C; O'Donoghue M; Hone J
    Ecology; 2014 May; 95(5):1153-61. PubMed ID: 25000747
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PARASITOLOGY AND SEROLOGY OF FREE-RANGING COYOTES (CANIS LATRANS) IN NORTH CAROLINA, USA.
    Chitwood MC; Swingen MB; Lashley MA; Flowers JR; Palamar MB; Apperson CS; Olfenbuttel C; Moorman CE; DePerno CS
    J Wildl Dis; 2015 Jul; 51(3):664-9. PubMed ID: 25984773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Isotopic investigation of niche partitioning among native carnivores and the non-native coyote (Canis latrans).
    Warsen SA; Frair JL; Teece MA
    Isotopes Environ Health Stud; 2014; 50(3):414-24. PubMed ID: 24666214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.