These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 26148486)
1. Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains. Bosma EF; van de Weijer AH; van der Vlist L; de Vos WM; van der Oost J; van Kranenburg R Microb Cell Fact; 2015 Jul; 14():99. PubMed ID: 26148486 [TBL] [Abstract][Full Text] [Related]
2. Isolation and screening of thermophilic bacilli from compost for electrotransformation and fermentation: characterization of Bacillus smithii ET 138 as a new biocatalyst. Bosma EF; van de Weijer AH; Daas MJ; van der Oost J; de Vos WM; van Kranenburg R Appl Environ Microbiol; 2015 Mar; 81(5):1874-83. PubMed ID: 25556192 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Wang Q; Chen T; Zhao X; Chamu J Biotechnol Bioeng; 2012 Jul; 109(7):1610-21. PubMed ID: 22231522 [TBL] [Abstract][Full Text] [Related]
4. Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216(T). Bosma EF; Koehorst JJ; van Hijum SA; Renckens B; Vriesendorp B; van de Weijer AH; Schaap PJ; de Vos WM; van der Oost J; van Kranenburg R Stand Genomic Sci; 2016; 11(1):52. PubMed ID: 27559429 [TBL] [Abstract][Full Text] [Related]
5. A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Zhang W; Gao W; Feng J; Zhang C; He Y; Cao M; Li Q; Sun Y; Yang C; Song C; Wang S Appl Microbiol Biotechnol; 2014 Nov; 98(21):8963-73. PubMed ID: 24859524 [TBL] [Abstract][Full Text] [Related]
6. Major Role of NAD-Dependent Lactate Dehydrogenases in the Production of l-Lactic Acid with High Optical Purity by the Thermophile Bacillus coagulans. Wang L; Cai Y; Zhu L; Guo H; Yu B Appl Environ Microbiol; 2014 Dec; 80(23):7134-41. PubMed ID: 25217009 [TBL] [Abstract][Full Text] [Related]
7. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans. Peters B; Junker A; Brauer K; Mühlthaler B; Kostner D; Mientus M; Liebl W; Ehrenreich A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2521-30. PubMed ID: 22940799 [TBL] [Abstract][Full Text] [Related]
8. Markerless deletion of putative alanine dehydrogenase genes in Bacillus licheniformis using a codBA-based counterselection technique. Kostner D; Rachinger M; Liebl W; Ehrenreich A Microbiology (Reading); 2017 Nov; 163(11):1532-1539. PubMed ID: 28984230 [TBL] [Abstract][Full Text] [Related]
9. Establishment of a markerless multiple-gene deletion method based on Cre/loxP mutant system for Bacillus pumilus. Guan ZB; Wang KQ; Shui Y; Liao XR J Basic Microbiol; 2017 Dec; 57(12):1065-1068. PubMed ID: 29052235 [TBL] [Abstract][Full Text] [Related]
10. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Ou MS; Mohammed N; Ingram LO; Shanmugam KT Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of L-valine production in Bacillus licheniformis by blocking three branched pathways. Liang C; Huo Y; Qi G; Wei X; Wang Q; Chen S Biotechnol Lett; 2015 Jun; 37(6):1243-8. PubMed ID: 25700818 [TBL] [Abstract][Full Text] [Related]
12. Xer-cise in Helicobacter pylori: one-step transformation for the construction of markerless gene deletions. Debowski AW; Gauntlett JC; Li H; Liao T; Sehnal M; Nilsson HO; Marshall BJ; Benghezal M Helicobacter; 2012 Dec; 17(6):435-43. PubMed ID: 23066820 [TBL] [Abstract][Full Text] [Related]
13. Parageobacillus thermoglucosidasius as an emerging thermophilic cell factory. Paredes-Barrada M; Kopsiaftis P; Claassens NJ; van Kranenburg R Metab Eng; 2024 May; 83():39-51. PubMed ID: 38490636 [TBL] [Abstract][Full Text] [Related]
14. Genetic engineering of Bacillus sp. and fermentation process optimizing for diacetyl production. Wang Y; Sun W; Zheng S; Zhang Y; Bao Y J Biotechnol; 2019 Aug; 301():2-10. PubMed ID: 31158408 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine. Meng W; Wang R; Xiao D Biotechnol Lett; 2015 Dec; 37(12):2475-80. PubMed ID: 26385762 [TBL] [Abstract][Full Text] [Related]
16. Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043. Shao YH; Guo LZ; Yu H; Zhao BS; Lu WD Extremophiles; 2017 Sep; 21(5):839-850. PubMed ID: 28660361 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Romero S; Merino E; Bolívar F; Gosset G; Martinez A Appl Environ Microbiol; 2007 Aug; 73(16):5190-8. PubMed ID: 17586670 [TBL] [Abstract][Full Text] [Related]
18. Functions of poly-gamma-glutamic acid (γ-PGA) degradation genes in γ-PGA synthesis and cell morphology maintenance. Feng J; Gao W; Gu Y; Zhang W; Cao M; Song C; Zhang P; Sun M; Yang C; Wang S Appl Microbiol Biotechnol; 2014; 98(14):6397-407. PubMed ID: 24769902 [TBL] [Abstract][Full Text] [Related]
19. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis. Zhu H; Yang SM; Yuan ZM; Ban R Microb Cell Fact; 2015 Apr; 14():54. PubMed ID: 25890046 [TBL] [Abstract][Full Text] [Related]
20. Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli. Liu R; Liang L; Chen K; Ma J; Jiang M; Wei P; Ouyang P Appl Microbiol Biotechnol; 2012 May; 94(4):959-68. PubMed ID: 22294432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]