BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 26148527)

  • 1. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission.
    Zhang G; Qiao Y; Xu T; Zhang C; Zhang Y; Shi L; Shuang S; Dong C
    Nanoscale; 2015 Aug; 7(29):12666-72. PubMed ID: 26148527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.
    Shojaeifard Z; Hemmateenejad B; Shamsipur M
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15177-86. PubMed ID: 27211049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysozyme-stabilized gold nanoclusters as a novel fluorescence probe for cyanide recognition.
    Lu D; Liu L; Li F; Shuang S; Li Y; Choi MM; Dong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():77-80. PubMed ID: 24231741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratiometric and sensitive cyanide sensing using dual-emissive gold nanoclusters.
    Yang H; Yang Y; Liu S; Zhan X; Zhou H; Li X; Yuan Z
    Anal Bioanal Chem; 2020 Sep; 412(23):5819-5826. PubMed ID: 32666140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive detection of cyanide using bovine serum albumin-stabilized cerium/gold nanoclusters.
    Wang CW; Chen YN; Wu BY; Lee CK; Chen YC; Huang YH; Chang HT
    Anal Bioanal Chem; 2016 Jan; 408(1):287-94. PubMed ID: 26507328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel bimetallic gold-silver nanoclusters with "Synergy"-enhanced fluorescence for cyanide sensing, cell imaging and temperature sensing.
    Tian L; Li Y; Ren T; Tong Y; Yang B; Li Y
    Talanta; 2017 Aug; 170():530-539. PubMed ID: 28501207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A ratiometric fluorescent probe for sensitive, selective and reversible detection of copper (II) based on riboflavin-stabilized gold nanoclusters.
    Zhang M; Le HN; Jiang XQ; Guo SM; Yu HJ; Ye BC
    Talanta; 2013 Dec; 117():399-404. PubMed ID: 24209359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective detection of iodide and cyanide anions using gold-nanoparticle-based fluorescent probes.
    Wei SC; Hsu PH; Lee YF; Lin YW; Huang CC
    ACS Appl Mater Interfaces; 2012 May; 4(5):2652-8. PubMed ID: 22524233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples.
    Lou X; Zhang Y; Qin J; Li Z
    Chemistry; 2011 Aug; 17(35):9691-6. PubMed ID: 21735497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of gold nanoclusters-loaded lysozyme nanoparticles for ratiometric fluorescent detection of cyanide in tap water, cyanogenic glycoside-containing plants, and soils.
    Tseng WB; Rau JY; Chiou HC; Tseng WL
    Environ Res; 2022 May; 207():112144. PubMed ID: 34619120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids.
    Li ZY; Wu YT; Tseng WL
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23708-16. PubMed ID: 26443919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric fluorescence detection of Cu
    Yang L; Zeng M; Du Y; Wang L; Peng B
    Luminescence; 2018 Nov; 33(7):1268-1274. PubMed ID: 30338624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-Localized Bright-Red Fluorescent Gold Nanoclusters as Cyanide-Selective Colorimetric and Fluorometric Nanoprobes.
    Rajamanikandan R; Ilanchelian M
    ACS Omega; 2018 Oct; 3(10):14111-14118. PubMed ID: 31458104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols.
    Chang HC; Chang YF; Fan NC; Ho JA
    ACS Appl Mater Interfaces; 2014; 6(21):18824-31. PubMed ID: 25323388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters.
    Xiong X; Tang Y; Zhang L; Zhao S
    Talanta; 2015 Jan; 132():790-5. PubMed ID: 25476379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-functional Au-Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect.
    Zhai Y; Jin L; Wang P; Dong S
    Chem Commun (Camb); 2011 Aug; 47(29):8268-70. PubMed ID: 21695338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectrofluorometric determination of berberine using a novel Au nanocluster with large Stokes shift.
    Wen A; Peng X; Zhang P; Long Y; Gong H; Xie Q; Yue M; Chen S
    Anal Bioanal Chem; 2018 Oct; 410(25):6489-6495. PubMed ID: 30022234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions.
    Xie J; Zheng Y; Ying JY
    Chem Commun (Camb); 2010 Feb; 46(6):961-3. PubMed ID: 20107664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blue-emitting copper nanoparticles as a fluorescent probe for detection of cyanide ions.
    Momeni S; Ahmadi R; Safavi A; Nabipour I
    Talanta; 2017 Dec; 175():514-521. PubMed ID: 28842026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent "turn-on" detecting CN(-) by nucleophilic addition induced Schiff-base hydrolysis.
    Lin Q; Cai Y; Li Q; Shi BB; Yao H; Zhang YM; Wei TB
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():113-8. PubMed ID: 25668691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.