These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 26148530)

  • 21. The potential role of mitochondria in pediatric traumatic brain injury.
    Robertson CL; Soane L; Siegel ZT; Fiskum G
    Dev Neurosci; 2006; 28(4-5):432-46. PubMed ID: 16943666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury.
    Robertson CL; Scafidi S; McKenna MC; Fiskum G
    Exp Neurol; 2009 Aug; 218(2):371-80. PubMed ID: 19427308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. T0901317, a liver X receptor agonist, ameliorates perinatal white matter injury induced by ischemia and hypoxia in neonatal rats.
    Gao T; Qian T; Wang T; Su Y; Qiu H; Tang W; Xing Q; Wang L
    Neurosci Lett; 2023 Jan; 793():136994. PubMed ID: 36460235
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Is lactate a good indicator of brain tissue hypoxia in the acute phase of traumatic brain injury? Results of a pilot study in 21 patients].
    Merino MA; Sahuquillo J; Borrull A; Poca MA; Riveiro M; Expósito L
    Neurocirugia (Astur); 2010 Aug; 21(4):289-301. PubMed ID: 20725697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MicroRNA therapeutic targets in neonatal hypoxic-ischemic brain injury: a narrative review.
    Peeples ES
    Pediatr Res; 2023 Mar; 93(4):780-788. PubMed ID: 35854090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dose-Dependent Neuroprotective Effects of Bovine Lactoferrin Following Neonatal Hypoxia-Ischemia in the Immature Rat Brain.
    Sanches E; van de Looij Y; Sow S; Toulotte A; da Silva A; Modernell L; Sizonenko S
    Nutrients; 2021 Oct; 13(11):. PubMed ID: 34836132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic resonance and near infrared spectroscopy for investigation of perinatal hypoxic-ischaemic brain injury.
    Wyatt JS; Edwards AD; Azzopardi D; Reynolds EO
    Arch Dis Child; 1989 Jul; 64(7 Spec No):953-63. PubMed ID: 2673061
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy metabolism in developing brain cells.
    Edmond J
    Can J Physiol Pharmacol; 1992; 70 Suppl():S118-29. PubMed ID: 1295662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebral ketone metabolism during development and injury.
    Prins ML
    Epilepsy Res; 2012 Jul; 100(3):218-23. PubMed ID: 22104087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic resonance spectroscopy in traumatic brain injury.
    Brooks WM; Friedman SD; Gasparovic C
    J Head Trauma Rehabil; 2001 Apr; 16(2):149-64. PubMed ID: 11275576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cerebral carbohydrate and energy metabolism in perinatal hypoxic-ischemic brain damage.
    Vannucci RC
    Brain Pathol; 1992 Jul; 2(3):229-34. PubMed ID: 1343838
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological CTG categorization in types of hypoxia compared with MRI and neurodevelopmental outcome in infants with HIE.
    Pereira S; Patel R; Zaima A; Tvarozkova K; Chisholm P; Kappelou O; Evanson J; Chandraharan E; Wertheim D; Shah DK
    J Matern Fetal Neonatal Med; 2022 Dec; 35(25):9675-9683. PubMed ID: 35282752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative metabolism, apoptosis and perinatal brain injury.
    Taylor DL; Edwards AD; Mehmet H
    Brain Pathol; 1999 Jan; 9(1):93-117. PubMed ID: 9989454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance techniques in the evaluation of the newborn brain.
    Hüppi PS; Barnes PD
    Clin Perinatol; 1997 Sep; 24(3):693-723. PubMed ID: 9394867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intervention strategies for neonatal hypoxic-ischemic cerebral injury.
    Perlman JM
    Clin Ther; 2006 Sep; 28(9):1353-65. PubMed ID: 17062309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular and physiological responses to juvenile traumatic brain injury: focus on growth and metabolism.
    Babikian T; Prins ML; Cai Y; Barkhoudarian G; Hartonian I; Hovda DA; Giza CC
    Dev Neurosci; 2010; 32(5-6):431-41. PubMed ID: 21071915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurologic Consequences of Neonatal Necrotizing Enterocolitis.
    Berken JA; Chang J
    Dev Neurosci; 2022; 44(4-5):295-308. PubMed ID: 35697005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting brain injury in neonatal hypoxic ischemic encephalopathy: closing the gap between experimental and clinical research.
    Aridas JD; Yawno T; Sutherland AE; Nitsos I; Ditchfield M; Wong FY; Fahey MC; Malhotra A; Wallace EM; Jenkin G; Miller SL
    Exp Neurol; 2014 Nov; 261():281-90. PubMed ID: 25079368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypoxia-ischemia is not an antecedent of most preterm brain damage: the illusion of validity.
    Gilles F; Gressens P; Dammann O; Leviton A
    Dev Med Child Neurol; 2018 Feb; 60(2):120-125. PubMed ID: 28656697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury.
    Prins ML; Hovda DA
    J Neurotrauma; 2001 Jan; 18(1):31-46. PubMed ID: 11200248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.