These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26148904)

  • 1. Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells.
    Zhang N; Chen FY; Wu XQ
    Sci Rep; 2015 Jul; 5():11984. PubMed ID: 26148904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Al13@Pt42 core-shell cluster for oxygen reduction reaction.
    Xiao BB; Zhu YF; Lang XY; Wen Z; Jiang Q
    Sci Rep; 2014 Jun; 4():5205. PubMed ID: 24902886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magic polyicosahedral core-shell clusters.
    Rossi G; Rapallo A; Mottet C; Fortunelli A; Baletto F; Ferrando R
    Phys Rev Lett; 2004 Sep; 93(10):105503. PubMed ID: 15447416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.
    Guo S; Zhang X; Zhu W; He K; Su D; Mendoza-Garcia A; Ho SF; Lu G; Sun S
    J Am Chem Soc; 2014 Oct; 136(42):15026-33. PubMed ID: 25279704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems.
    Rapallo A; Rossi G; Ferrando R; Fortunelli A; Curley BC; Lloyd LD; Tarbuck GM; Johnston RL
    J Chem Phys; 2005 May; 122(19):194308. PubMed ID: 16161574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells.
    Zhang X; Yu S; Qiao L; Zheng W; Liu P
    J Chem Phys; 2015 May; 142(19):194710. PubMed ID: 26001476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principles and Methods for the Rational Design of Core-Shell Nanoparticle Catalysts with Ultralow Noble Metal Loadings.
    Hunt ST; Román-Leshkov Y
    Acc Chem Res; 2018 May; 51(5):1054-1062. PubMed ID: 29510023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of efficient transition metal core-shell electrocatalysts for oxygen reduction and evolution reactions.
    Zhao Z; D'Souza J; Chen F; Xia Z
    RSC Adv; 2018 Dec; 9(1):536-542. PubMed ID: 35521622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights Into Oxygen Adsorption on Ag-Cu Nanocluster as an Oxidation Catalyst by Ab Initio Atomistic Thermodynamics.
    Liu H; Carbajal-De La Torre G; Espinosa-Medina MA
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1236-44. PubMed ID: 26353639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced catalytic activity toward O₂ reduction on Pt-modified La₁-xSrxCo₁-yFeyO₃-δ cathode: a combination study of first-principles calculation and experiment.
    Yang W; Wang Z; Wang Z; Yang Z; Xia C; Peng R; Wu X; Lu Y
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21051-9. PubMed ID: 25380101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
    Froemming NS; Henkelman G
    J Chem Phys; 2009 Dec; 131(23):234103. PubMed ID: 20025310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.
    Wang CH; Hsu HC; Wang KC
    J Colloid Interface Sci; 2014 Aug; 427():91-7. PubMed ID: 24388448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic activity for oxygen reduction reaction on platinum-based core-shell nanoparticles: all-electron density functional theory.
    Shin J; Choi JH; Cha PR; Kim SK; Kim I; Lee SC; Jeong DS
    Nanoscale; 2015 Oct; 7(38):15830-9. PubMed ID: 26360101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic characteristics of AgCu bimetallic nanoparticles in the oxygen reduction reaction.
    Shin K; Kim DH; Lee HM
    ChemSusChem; 2013 Jun; 6(6):1044-9. PubMed ID: 23650210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient cluster model to describe the oxygen reduction reaction activity of metal catalysts: a combined theoretical and experimental study.
    Cui L; Wang H; Chen S; Zhang J; Xiang Y; Lu S
    Phys Chem Chem Phys; 2018 Nov; 20(41):26675-26680. PubMed ID: 30320329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell PdAu nanocluster catalysts to suppress sulfur poisoning.
    Gao S; Wang L; Li H; Liu Z; Shi G; Peng J; Wang B; Wang W; Cho K
    Phys Chem Chem Phys; 2021 Jul; 23(28):15010-15019. PubMed ID: 34128008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical insights on the catalytic activity and mechanism for oxygen reduction reaction at Fe and P codoped graphene.
    He F; Li K; Xie G; Wang Y; Jiao M; Tang H; Wu Z
    Phys Chem Chem Phys; 2016 May; 18(18):12675-81. PubMed ID: 27094325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.