These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26148904)

  • 21. A DFT study of oxygen dissociation on platinum based nanoparticles.
    Jennings PC; Aleksandrov HA; Neyman KM; Johnston RL
    Nanoscale; 2014 Jan; 6(2):1153-1165. PubMed ID: 24296728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Design of Core/Shell Nanoparticles for Oxygen Reduction Reactions.
    Zhang X; Lu G
    J Phys Chem Lett; 2014 Jan; 5(2):292-7. PubMed ID: 26270702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Favorable Core/Shell Interface within Co
    Liu C; Ma Z; Cui M; Zhang Z; Zhang X; Su D; Murray CB; Wang JX; Zhang S
    Nano Lett; 2018 Dec; 18(12):7870-7875. PubMed ID: 30427689
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Selectivity to H2 Formation in Decomposition of HCOOH on the Ag19@Pd60 Core-Shell Nanocluster from First-Principles.
    Cho J; Lee S; Han J; Yoon SP; Nam SW; Choi SH; Hong SA; Lee KY; Ham HC
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8233-7. PubMed ID: 26726494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A First-Principle Study of Synergized O2 Activation and CO Oxidation by Ag Nanoparticles on TiO2(101) Support.
    Jia C; Zhang G; Zhong W; Jiang J
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10315-23. PubMed ID: 27049335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to Boost the Activity of the Monolayer Pt Supported on TiC Catalysts for Oxygen Reduction Reaction: A Density Functional Theory Study.
    Zhu H; Liu H; Yang L; Xiao B
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31085995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly efficient Pd-based core-shell nanowire catalysts for O2 dissociation.
    Zhang Y; Yang Z; Wu M
    Phys Chem Chem Phys; 2014 Oct; 16(38):20532-6. PubMed ID: 25144548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode.
    Ma W; Chen F; Zhang N; Wu X
    J Mol Model; 2014 Oct; 20(10):2454. PubMed ID: 25227449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study of Cu(38-n)Au(n) clusters using a combined empirical potential-density functional approach.
    Tran DT; Johnston RL
    Phys Chem Chem Phys; 2009 Nov; 11(44):10340-9. PubMed ID: 19890518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxygen-Molecule Adsorption and Dissociation on BCN Graphene: A First-Principles Study.
    Tang S; Wu W; Liu L; Gu J
    Chemphyschem; 2017 Jan; 18(1):101-110. PubMed ID: 27685829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A theoretical study of O2 activation by the Au7-cluster on Mg(OH)2: roles of surface hydroxyls and hydroxyl defects.
    Jia C; Fan W
    Phys Chem Chem Phys; 2015 Nov; 17(45):30736-43. PubMed ID: 26529519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness.
    Li Y; Wang ZW; Chiu CY; Ruan L; Yang W; Yang Y; Palmer RE; Huang Y
    Nanoscale; 2012 Feb; 4(3):845-51. PubMed ID: 22159178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT.
    Hansen HA; Rossmeisl J; Nørskov JK
    Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic Restructuring Induced Oxygen Activation on AgCu Near-Surface Alloys.
    Cramer LA; Liu Y; Deshlahra P; Sykes ECH
    J Phys Chem Lett; 2020 Aug; 11(15):5844-5848. PubMed ID: 32602721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-Coated Core-Shell Fe-Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn-Air Battery.
    Nam G; Park J; Choi M; Oh P; Park S; Kim MG; Park N; Cho J; Lee JS
    ACS Nano; 2015 Jun; 9(6):6493-501. PubMed ID: 25967866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of chemical ordering in a Ag-Pt nanoalloy particle via first-principles simulations.
    Negreiros FR; Taherkhani F; Parsafar G; Caro A; Fortunelli A
    J Chem Phys; 2012 Nov; 137(19):194302. PubMed ID: 23181301
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction.
    Choi SI; Shao M; Lu N; Ruditskiy A; Peng HC; Park J; Guerrero S; Wang J; Kim MJ; Xia Y
    ACS Nano; 2014 Oct; 8(10):10363-71. PubMed ID: 25247667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.