BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26148959)

  • 1. Negishi Cross-Coupling Is Compatible with a Reactive B-Cl Bond: Development of a Versatile Late-Stage Functionalization of 1,2-Azaborines and Its Application to the Synthesis of New BN Isosteres of Naphthalene and Indenyl.
    Brown AN; Li B; Liu SY
    J Am Chem Soc; 2015 Jul; 137(28):8932-5. PubMed ID: 26148959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron-substituted 1,3-dihydro-1,3-azaborines: synthesis, structure, and evaluation of aromaticity.
    Xu S; Mikulas TC; Zakharov LN; Dixon DA; Liu SY
    Angew Chem Int Ed Engl; 2013 Jul; 52(29):7527-31. PubMed ID: 23749749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive cross-coupling of 3-bromo-2,1-borazaronaphthalenes with alkyl iodides.
    Molander GA; Wisniewski SR; Traister KM
    Org Lett; 2014 Jul; 16(14):3692-5. PubMed ID: 24977641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protecting group-free synthesis of 1,2-azaborines: a simple approach to the construction of BN-benzenoids.
    Abbey ER; Lamm AN; Baggett AW; Zakharov LN; Liu SY
    J Am Chem Soc; 2013 Aug; 135(34):12908-13. PubMed ID: 23914914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the functional group tolerance of cross-coupling in 1,2-dihydro-1,2-azaborines: installation of alkyl, alkenyl, aryl, and heteroaryl substituents while maintaining a B-H bond.
    Brown AN; Li B; Liu SY
    Tetrahedron; 2019 Feb; 75(5):580-583. PubMed ID: 31537948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Boron Protecting Group Strategy for 1,2-Azaborines.
    Baggett AW; Liu SY
    J Am Chem Soc; 2017 Oct; 139(42):15259-15264. PubMed ID: 28968091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity through isosterism: the case of boron-substituted 1,2-dihydro-1,2-azaborines.
    Marwitz AJ; Abbey ER; Jenkins JT; Zakharov LN; Liu SY
    Org Lett; 2007 Nov; 9(23):4905-8. PubMed ID: 17944483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Late-Stage Functionalization of 1,2-Dihydro-1,2-azaborines via Regioselective Iridium-Catalyzed C-H Borylation: The Development of a New N,N-Bidentate Ligand Scaffold.
    Baggett AW; Vasiliu M; Li B; Dixon DA; Liu SY
    J Am Chem Soc; 2015 Apr; 137(16):5536-41. PubMed ID: 25870116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessing 2-(hetero)arylmethyl-, -allyl-, and -propargyl-2,1-borazaronaphthalenes: palladium-catalyzed cross-couplings of 2-(chloromethyl)-2,1-borazaronaphthalenes.
    Molander GA; Amani J; Wisniewski SR
    Org Lett; 2014 Nov; 16(22):6024-7. PubMed ID: 25365512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monobenzofused 1,4-azaborines: synthesis, characterization, and discovery of a unique coordination mode.
    Xu S; Haeffner F; Li B; Zakharov LN; Liu SY
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6795-9. PubMed ID: 24838444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accessing molecularly complex azaborines: palladium-catalyzed Suzuki-Miyaura cross-couplings of brominated 2,1-borazaronaphthalenes and potassium organotrifluoroborates.
    Molander GA; Wisniewski SR
    J Org Chem; 2014 Jul; 79(14):6663-78. PubMed ID: 24984003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Efficient Nucleophilic Azaborine Building Blocks for the Synthesis of B-N Naphthyl (Hetero)arylmethane Isosteres.
    Amani J; Molander GA
    Org Lett; 2015 Jul; 17(14):3624-7. PubMed ID: 26146880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhodium-catalyzed B-H activation of 1,2-azaborines: synthesis and characterization of BN isosteres of stilbenes.
    Brown AN; Zakharov LN; Mikulas T; Dixon DA; Liu SY
    Org Lett; 2014 Jun; 16(12):3340-3. PubMed ID: 24916200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 1,3-dihydro-1,3-azaborine debuts.
    Xu S; Zakharov LN; Liu SY
    J Am Chem Soc; 2011 Dec; 133(50):20152-5. PubMed ID: 22091703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green method for the synthesis of highly substituted cyclohexa-1,3-diene, polyhydroindene, polyhydronaphthalene, isochromene, isothiochromene, and isoquinoline derivatives in ionic liquids.
    Wang XS; Wu JR; Zhou J; Tu SJ
    J Comb Chem; 2009; 11(6):1011-22. PubMed ID: 19764713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of substituted naphthalenes via a catalytic ring-expansion rearrangement.
    Glass AC; Morris BB; Zakharov LN; Liu SY
    Org Lett; 2008 Nov; 10(21):4855-7. PubMed ID: 18834135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accessing an azaborine building block: synthesis and substitution reactions of 2-chloromethyl-2,1-borazaronaphthalene.
    Molander GA; Wisniewski SR; Amani J
    Org Lett; 2014 Nov; 16(21):5636-9. PubMed ID: 25317850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The State of the Art in Azaborine Chemistry: New Synthetic Methods and Applications.
    Giustra ZX; Liu SY
    J Am Chem Soc; 2018 Jan; 140(4):1184-1194. PubMed ID: 29314835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for Accessing Nitrogen-Containing, B-Heteroaryl-Substituted 2,1-Borazaronaphthalenes.
    Davies GH; Zhou ZZ; Jouffroy M; Molander GA
    J Org Chem; 2017 Jan; 82(1):549-555. PubMed ID: 27966969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Rise of 1,4-BN-Heteroarenes: Synthesis, Properties, and Applications.
    Chen C; Du CZ; Wang XY
    Adv Sci (Weinh); 2022 Jul; 9(19):e2200707. PubMed ID: 35419988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.