BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26149081)

  • 1. Removal of Anthracene and Fluoranthene by Waxy Corn, Long Bean and Okra in Lead-Contaminated Soil.
    Somtrakoon K; Chouychai W; Lee H
    Bull Environ Contam Toxicol; 2015 Sep; 95(3):407-13. PubMed ID: 26149081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing anthracene and fluorene degradation in anthracene and fluorene-contaminated soil by single and mixed plant cultivation.
    Somtrakoon K; Chouychai W; Lee H
    Int J Phytoremediation; 2014; 16(4):415-28. PubMed ID: 24912240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil.
    Song M; Jiang L; Zhang D; Luo C; Wang Y; Yu Z; Yin H; Zhang G
    J Hazard Mater; 2016 May; 308():50-7. PubMed ID: 26808242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Plant Growth Regulators on Phytoremediation of Hexachlorocyclohexane-Contaminated Soil.
    Chouychai W; Kruatrachue M; Lee H
    Int J Phytoremediation; 2015; 17(11):1053-9. PubMed ID: 25985054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere.
    Sun H; Xu J; Yang S; Liu G; Dai S
    Chemosphere; 2004 Jan; 54(4):569-74. PubMed ID: 14581059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and Phytoremediation Efficiency of Winged Bean in Fluorene- and Pyrene-Contaminated Soil.
    Chouychai W; Swangying T; Somtrakoon K; Lee H
    Bull Environ Contam Toxicol; 2018 Nov; 101(5):631-636. PubMed ID: 30368575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of surfactants on the fractionation, vermiaccumulation, and removal of fluoranthene by earthworms in soil.
    Shi Z; Wang C; Zhao Y
    Chemosphere; 2020 Jul; 250():126332. PubMed ID: 32234626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixing of an anthracene-contaminated soil: a simple but efficient remediation technique?
    Delgado-Balbuena L; Aguilar-Chávez ÁR; Luna-Guido ML; Dendooven L
    Ecotoxicol Environ Saf; 2013 Oct; 96():238-41. PubMed ID: 23896178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs.
    Alvarez-Bernal D; Contreras-Ramos S; Marsch R; Dendooven L
    Int J Phytoremediation; 2007; 9(2):79-90. PubMed ID: 18246717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of polycyclic aromatic hydrocarbons (PAHs)-degrading Mycobacterium spp. and the degradation in soil.
    Zeng J; Lin X; Zhang J; Li X
    J Hazard Mater; 2010 Nov; 183(1-3):718-23. PubMed ID: 20724073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of birch (Betula spp.) and associated rhizoidal bacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birch proteome and bacterial community.
    Tervahauta AI; Fortelius C; Tuomainen M; Akerman ML; Rantalainen K; Sipilä T; Lehesranta SJ; Koistinen KM; Kärenlampi S; Yrjälä K
    Environ Pollut; 2009 Jan; 157(1):341-6. PubMed ID: 18675498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil.
    Košnář Z; Mercl F; Tlustoš P
    Ecotoxicol Environ Saf; 2018 May; 153():16-22. PubMed ID: 29407733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil.
    Chouychai W; Thongkukiatkul A; Upatham S; Lee H; Pokethitiyook P; Kruatrachue M
    J Environ Biol; 2009 Jan; 30(1):139-44. PubMed ID: 20112876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil.
    Hovsepyan A; Greipsson S
    Int J Phytoremediation; 2004; 6(4):305-21. PubMed ID: 15696704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil.
    Zhao JK; Li XM; Ai GM; Deng Y; Liu SJ; Jiang CY
    J Hazard Mater; 2016 Nov; 318():90-98. PubMed ID: 27415596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAHs biodegradation potential of indigenous consortia from agricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB).
    Wang C; Wang F; Wang T; Bian Y; Yang X; Jiang X
    J Hazard Mater; 2010 Apr; 176(1-3):41-7. PubMed ID: 19954884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126.
    van Herwijnen R; Wattiau P; Bastiaens L; Daal L; Jonker L; Springael D; Govers HA; Parsons JR
    Res Microbiol; 2003 Apr; 154(3):199-206. PubMed ID: 12706509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases.
    Li X; Li P; Lin X; Zhang C; Li Q; Gong Z
    J Hazard Mater; 2008 Jan; 150(1):21-6. PubMed ID: 17512657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil.
    Sawulski P; Boots B; Clipson N; Doyle E
    Lett Appl Microbiol; 2015 Aug; 61(2):199-207. PubMed ID: 26031321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconcentration factor estimates of polycyclic aromatic hydrocarbons in grains of corn plants cultivated in soils treated with sewage sludge.
    Paraíba LC; Queiroz SC; Maia Ade H; Ferracini VL
    Sci Total Environ; 2010 Jul; 408(16):3270-6. PubMed ID: 20451952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.