These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 26149121)

  • 21. The evolutionary history of the genes involved in the biosynthesis of the antioxidant ergothioneine.
    Jones GW; Doyle S; Fitzpatrick DA
    Gene; 2014 Oct; 549(1):161-70. PubMed ID: 25068406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure and Mechanism of Ergothionase from Treponema denticola.
    Maurer A; Leisinger F; Lim D; Seebeck FP
    Chemistry; 2019 Aug; 25(44):10298-10303. PubMed ID: 31188501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ergothioneine biosynthetic methyltransferase EgtD reveals the structural basis of aromatic amino acid betaine biosynthesis.
    Vit A; Misson L; Blankenfeldt W; Seebeck FP
    Chembiochem; 2015 Jan; 16(1):119-25. PubMed ID: 25404173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD.
    Vit A; Misson L; Blankenfeldt W; Seebeck FP
    Acta Crystallogr F Struct Biol Commun; 2014 May; 70(Pt 5):676-80. PubMed ID: 24817736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses.
    Song H; Leninger M; Lee N; Liu P
    Org Lett; 2013 Sep; 15(18):4854-7. PubMed ID: 24016264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal Structure of the Ergothioneine Sulfoxide Synthase from
    Naowarojna N; Irani S; Hu W; Cheng R; Zhang L; Li X; Chen J; Zhang YJ; Liu P
    ACS Catal; 2019 Aug; 9(8):6955-6961. PubMed ID: 32257583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactive Sulfur Species-Mediated Activation of the Keap1-Nrf2 Pathway by 1,2-Naphthoquinone through Sulfenic Acids Formation under Oxidative Stress.
    Shinkai Y; Abiko Y; Ida T; Miura T; Kakehashi H; Ishii I; Nishida M; Sawa T; Akaike T; Kumagai Y
    Chem Res Toxicol; 2015 May; 28(5):838-47. PubMed ID: 25807370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-step Replacement of an Unreactive C-H Bond by a C-S Bond Using Polysulfide as the Direct Sulfur Source in Anaerobic Ergothioneine Biosynthesis.
    Cheng R; Wu L; Lai R; Peng C; Naowarojna N; Hu W; Li X; Whelan SA; Lee N; Lopez J; Zhao C; Yong Y; Xue J; Jiang X; Grinstaff MW; Deng Z; Chen J; Cui Q; Zhou J; Liu P
    ACS Catal; 2020 Aug; 10(16):8981-8994. PubMed ID: 34306804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis.
    Song H; Her AS; Raso F; Zhen Z; Huo Y; Liu P
    Org Lett; 2014 Apr; 16(8):2122-5. PubMed ID: 24684381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Alternative Active Site Architecture for O
    Stampfli AR; Goncharenko KV; Meury M; Dubey BN; Schirmer T; Seebeck FP
    J Am Chem Soc; 2019 Apr; 141(13):5275-5285. PubMed ID: 30883103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from
    Beliaeva MA; Seebeck FP
    JACS Au; 2022 Sep; 2(9):2098-2107. PubMed ID: 36186560
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis.
    Leisinger F; Burn R; Meury M; Lukat P; Seebeck FP
    J Am Chem Soc; 2019 May; 141(17):6906-6914. PubMed ID: 30943021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A molecular dynamics and quantum mechanics/molecular mechanics study of the catalytic reductase mechanism of methionine sulfoxide reductase A: formation and reduction of a sulfenic acid.
    Dokainish HM; Gauld JW
    Biochemistry; 2013 Mar; 52(10):1814-27. PubMed ID: 23418817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of ergothioneine biosynthesis.
    Stampfli AR; Blankenfeldt W; Seebeck FP
    Curr Opin Struct Biol; 2020 Dec; 65():1-8. PubMed ID: 32408082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In Vitro Production of Ergothioneine Isotopologues.
    Beliaeva MA; Burn R; Lim D; Seebeck FP
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5209-5212. PubMed ID: 32996678
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfenic acids as reactive intermediates in xenobiotic metabolism.
    Mansuy D; Dansette PM
    Arch Biochem Biophys; 2011 Mar; 507(1):174-85. PubMed ID: 20869346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the native cysteine-sulfenic acid redox center of enterococcal NADH peroxidase refined at 2.8 A resolution.
    Yeh JI; Claiborne A; Hol WG
    Biochemistry; 1996 Aug; 35(31):9951-7. PubMed ID: 8756456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vitro Reconstitution of the Remaining Steps in Ovothiol A Biosynthesis: C-S Lyase and Methyltransferase Reactions.
    Naowarojna N; Huang P; Cai Y; Song H; Wu L; Cheng R; Li Y; Wang S; Lyu H; Zhang L; Zhou J; Liu P
    Org Lett; 2018 Sep; 20(17):5427-5430. PubMed ID: 30141637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural insights into catalysis by βC-S lyase from Streptococcus anginosus.
    Kezuka Y; Yoshida Y; Nonaka T
    Proteins; 2012 Oct; 80(10):2447-58. PubMed ID: 22674431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.