BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 26149344)

  • 1. A Shear Strain Route Dependency of Martensite Formation in 316L Stainless Steel.
    Kang SH; Kim TK; Jang J; Oh KH
    Microsc Microanal; 2015 Jun; 21(3):582-7. PubMed ID: 26149344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path.
    Liu X; Zhang S; Bao Y; Zhang Z; Yue Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Shear Strain Rate on Microstructure and Properties of Austenitic Steel Processed by Cyclic Forward/Reverse Torsion.
    Zhang Z; Dong Q; Song B; He H; Chai L; Guo N; Wang B; Yao Z
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30736410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of microstructure evolution and martensite transformation developed in austenitic stainless steel subjected to a plastic strain gradient: A combination study of Mirco-XRD, EBSD, and ECCI techniques.
    Berahmand M; Ketabchi M; Jamshidian M; Tsurekawa S
    Micron; 2021 Apr; 143():103014. PubMed ID: 33549854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EBSD and TEM investigation of the hot deformation substructure characteristics of a type 316L austenitic stainless steel.
    Cizek P; Whiteman JA; Rainforth WM; Beynon JH
    J Microsc; 2004 Mar; 213(3):285-95. PubMed ID: 15009696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantitative evaluation of microstructure by electron back-scattered diffraction pattern quality variations.
    Kang SH; Jin HH; Jang J; Choi YS; Oh KH; Foley DC; Zhang X
    Microsc Microanal; 2013 Aug; 19 Suppl 5():83-8. PubMed ID: 23920181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemically induced annealing of stainless-steel surfaces.
    Burstein GT; Hutchings IM; Sasaki K
    Nature; 2000 Oct; 407(6806):885-7. PubMed ID: 11057662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Rolling Temperature on Microstructure Evolution and Mechanical Properties of AISI316LN Austenitic Stainless Steel.
    Xiong Y; Yue Y; He T; Lu Y; Ren F; Cao W
    Materials (Basel); 2018 Aug; 11(9):. PubMed ID: 30158476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure Evolution at Ni/Fe Interface in Dissimilar Metal Weld between Ferritic Steel and Austenitic Stainless Steel.
    Li X; Nie J; Wang X; Li K; Zhang H
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of a cold-rolled 2101 lean duplex stainless steel.
    Bassani P; Breda M; Brunelli K; Mészáros I; Passaretti F; Zanellato M; Calliari I
    Microsc Microanal; 2013 Aug; 19(4):988-95. PubMed ID: 23721654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of strain and strain-induced α'-martensite on passive films in AISI 304 austenitic stainless steel.
    Lv J; Luo H
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():484-90. PubMed ID: 24268285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():196-203. PubMed ID: 25492189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable Martensite Transformation and Strain-Controlled Fatigue Behavior of a Gradient Nanostructured Austenite Stainless Steel.
    Lei Y; Xu J; Wang Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Transformation in 316L Austenitic Steel Induced by Fracture at Cryogenic Temperatures: Experiment and Modelling.
    Nalepka K; Skoczeń B; Ciepielowska M; Schmidt R; Tabin J; Schmidt E; Zwolińska-Faryj W; Chulist R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Copper Addition on the Formability of 304L Austenitic Stainless Steel.
    Huang A; Wang K; Zhao Y; Wang W; Wei X; Peng J
    J Mater Eng Perform; 2023; 32(8):3563-3570. PubMed ID: 36157845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Analysis of an Austenitic Stainless Steel Subjected to Surface Mechanical Attrition Treatment and Plasma Nitriding.
    Proust G; Retraint D; Chemkhi M; Roos A; Demangel C
    Microsc Microanal; 2015 Aug; 21(4):919-26. PubMed ID: 26139391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Surface Modification of 347 Stainless Steel upon Shot Peening.
    Li K; Zheng Q; Li C; Shao B; Guo D; Chen D; Sun J; Dong J; Cao P; Shin K
    Scanning; 2017; 2017():2189614. PubMed ID: 29379582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel.
    Dong H; Li ZC; Somani MC; Misra RDK
    J Mech Behav Biomed Mater; 2021 Jul; 119():104489. PubMed ID: 33780850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate effects on transformation kinetics in a metastable austenitic stainless steel.
    Alturk R; Luecke WE; Mates S; Araujo A; Raghavan KS; Abu-Farha F
    Procedia Eng; 2017; 207():. PubMed ID: 33029261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of C and N on Strain-Induced Martensite Formation in Fe-15Cr-7Mn-4Ni-0.5Si Austenitic Steel.
    Quitzke C; Huang Q; Biermann H; Volkova O; Wendler M
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.