These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26149349)

  • 1. Micelle-Encapsulated Quantum Dot-Porphyrin Assemblies as in Vivo Two-Photon Oxygen Sensors.
    Lemon CM; Karnas E; Han X; Bruns OT; Kempa TJ; Fukumura D; Bawendi MG; Jain RK; Duda DG; Nocera DG
    J Am Chem Soc; 2015 Aug; 137(31):9832-42. PubMed ID: 26149349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon oxygen sensing with quantum dot-porphyrin conjugates.
    Lemon CM; Karnas E; Bawendi MG; Nocera DG
    Inorg Chem; 2013 Sep; 52(18):10394-406. PubMed ID: 23978247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of self-assembled and micelle encapsulated QD chemosensor constructs for biological sensing.
    Lemon CM; Nocera DG
    Faraday Discuss; 2015; 185():249-66. PubMed ID: 26399200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes.
    Niedermair F; Borisov SM; Zenkl G; Hofmann OT; Weber H; Saf R; Klimant I
    Inorg Chem; 2010 Oct; 49(20):9333-42. PubMed ID: 20839844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing lipid coating dynamics of quantum dot core micelles via Förster resonance energy transfer.
    Zhao Y; Schapotschnikow P; Skajaa T; Vlugt TJ; Mulder WJ; de Mello Donegá C; Meijerink A
    Small; 2014 Mar; 10(6):1163-70. PubMed ID: 24343988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single nanoparticle imaging and characterization of different phospholipid-encapsulated quantum dot micelles.
    Liu J; Yang X; Wang K; He Y; Zhang P; Ji H; Jian L; Liu W
    Langmuir; 2012 Jul; 28(28):10602-9. PubMed ID: 22716937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microparticle ratiometric oxygen sensors utilizing near-infrared emitting quantum dots.
    Collier BB; Singh S; McShane M
    Analyst; 2011 Mar; 136(5):962-7. PubMed ID: 21170467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging.
    Fang X; Ju B; Liu Z; Wang F; Xi G; Sun Z; Chen H; Sui C; Wang M; Wu C
    Chembiochem; 2019 Feb; 20(4):521-525. PubMed ID: 30347116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin.
    Krivenkov V; Samokhvalov P; Solovyeva D; Bilan R; Chistyakov A; Nabiev I
    Opt Lett; 2015 Apr; 40(7):1440-3. PubMed ID: 25831354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dots encapsulated in phospholipid micelles for imaging and quantification of tumors in the near-infrared region.
    Papagiannaros A; Levchenko T; Hartner W; Mongayt D; Torchilin V
    Nanomedicine; 2009 Jun; 5(2):216-24. PubMed ID: 19223245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer.
    Qiao Y; Polzer F; Kirmse H; Steeg E; Kühn S; Friede S; Kirstein S; Rabe JP
    ACS Nano; 2015 Feb; 9(2):1552-60. PubMed ID: 25555126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots.
    Erogbogbo F; Chang CW; May J; Prasad PN; Swihart MT
    Nanoscale; 2012 Aug; 4(16):5163-8. PubMed ID: 22802158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triazole- and triazolium-containing porphyrin-cages for optical anion sensing.
    Gilday LC; White NG; Beer PD
    Dalton Trans; 2012 Jun; 41(23):7092-7. PubMed ID: 22561990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysical studies of CdTe quantum dots in the presence of a zinc cationic porphyrin.
    Keane PM; Gallagher SA; Magno LM; Leising MJ; Clark IP; Greetham GM; Towrie M; Gun'ko YK; Kelly JM; Quinn SJ
    Dalton Trans; 2012 Nov; 41(42):13159-66. PubMed ID: 23007292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting.
    Jin S; Son HJ; Farha OK; Wiederrecht GP; Hupp JT
    J Am Chem Soc; 2013 Jan; 135(3):955-8. PubMed ID: 23293894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging.
    Carion O; Mahler B; Pons T; Dubertret B
    Nat Protoc; 2007; 2(10):2383-90. PubMed ID: 17947980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna.
    Briñas RP; Troxler T; Hochstrasser RM; Vinogradov SA
    J Am Chem Soc; 2005 Aug; 127(33):11851-62. PubMed ID: 16104764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores.
    Finikova OS; Troxler T; Senes A; DeGrado WF; Hochstrasser RM; Vinogradov SA
    J Phys Chem A; 2007 Aug; 111(30):6977-90. PubMed ID: 17608457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micelle-templated composite quantum dots for super-resolution imaging.
    Xu J; Fan Q; Mahajan KD; Ruan G; Herrington A; Tehrani KF; Kner P; Winter JO
    Nanotechnology; 2014 May; 25(19):195601. PubMed ID: 24762566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photostability of quantum dot micelles under ultraviolet irradiation.
    Chinnathambi S; Hanagata N
    Luminescence; 2019 Aug; 34(5):472-479. PubMed ID: 30809921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.