BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 26149373)

  • 1. Double-site recognition of pathogenic bacterial whole cells based on an antibiotic-affinity strategy.
    Gao H; Yang S; Han J; Xiong J; Kong W; Li C; Liao G; Fu Z
    Chem Commun (Camb); 2015 Aug; 51(62):12497-500. PubMed ID: 26149373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sandwich fluorimetric method for specific detection of Staphylococcus aureus based on antibiotic-affinity strategy.
    Kong W; Xiong J; Yue H; Fu Z
    Anal Chem; 2015 Oct; 87(19):9864-8. PubMed ID: 26352835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers.
    Yang S; Ouyang H; Su X; Gao H; Kong W; Wang M; Shu Q; Fu Z
    Biosens Bioelectron; 2016 Apr; 78():174-180. PubMed ID: 26606309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic and mammal IgG based lateral flow assay for simple and sensitive detection of Staphylococcus aureus.
    Zhao M; Yao X; Liu S; Zhang H; Wang L; Yin X; Su L; Xu B; Wang J; Lan Q; Zhang D
    Food Chem; 2021 Mar; 339():127955. PubMed ID: 32919344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific chemiluminescent protocol for dual-site recognition of Streptococcus mutans utilizing strong affinity between teicoplanin and Gram-positive bacteria.
    Su X; Wang M; Wu Y; He Y; Fu Z
    Talanta; 2018 Mar; 179():350-355. PubMed ID: 29310243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.
    Cheng D; Yu M; Fu F; Han W; Li G; Xie J; Song Y; Swihart MT; Song E
    Anal Chem; 2016 Jan; 88(1):820-5. PubMed ID: 26641108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotational-echo double resonance characterization of vancomycin binding sites in Staphylococcus aureus.
    Kim SJ; Cegelski L; Studelska DR; O'Connor RD; Mehta AK; Schaefer J
    Biochemistry; 2002 Jun; 41(22):6967-77. PubMed ID: 12033929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive detection of S. Aureus using aptamer- and vancomycin -copper nanoclusters as dual recognition strategy.
    Bagheri Pebdeni A; Mousavizadegan M; Hosseini M
    Food Chem; 2021 Nov; 361():130137. PubMed ID: 34051601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum simulations of the structure and binding of glycopeptide antibiotic aglycons to cell wall analogues.
    Lee JG; Sagui C; Roland C
    J Phys Chem B; 2005 Nov; 109(43):20588-96. PubMed ID: 16853665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular interactions between glycopeptide vancomycin and bacterial cell wall peptide analogues.
    Xing B; Jiang T; Wu X; Liew R; Zhou J; Zhang D; Yeow EK
    Chemistry; 2011 Dec; 17(50):14170-7. PubMed ID: 22083883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance.
    Hiramatsu K
    Lancet Infect Dis; 2001 Oct; 1(3):147-55. PubMed ID: 11871491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light scattering sensing detection of pathogens based on the molecular recognition of immunoglobulin with cell wall-associated protein A.
    Liu ZD; Chen SF; Huang CZ; Zhen SJ; Liao QG
    Anal Chim Acta; 2007 Sep; 599(2):279-86. PubMed ID: 17870291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential inhibition of Staphylococcus aureus PBP2 by glycopeptide antibiotics.
    Leimkuhler C; Chen L; Barrett D; Panzone G; Sun B; Falcone B; Oberthür M; Donadio S; Walker S; Kahne D
    J Am Chem Soc; 2005 Mar; 127(10):3250-1. PubMed ID: 15755121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Vancomycin-resistant Staphylococcus aureus].
    Rodríguez CA; Vesga O
    Biomedica; 2005 Dec; 25(4):575-87. PubMed ID: 16433184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Vancomycin-based fluorescent enzyme-linked immunoabsorbent assay for detection of Staphylococcus aureus].
    Li S; Chen C; Chen X
    Sheng Wu Gong Cheng Xue Bao; 2018 Sep; 34(9):1510-1517. PubMed ID: 30255685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of perfluorocarbon affinity emulsions for the rapid isolation of Staphylococcus aureus.
    McCreath GE; Chase HA
    Biotechnol Prog; 1996; 12(1):77-83. PubMed ID: 8845111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of glycopeptide antibiotics with peptides that model bacterial cell-wall precursors.
    Lehmann C; Bunkóczi G; Vértesy L; Sheldrick GM
    J Mol Biol; 2002 May; 318(3):723-32. PubMed ID: 12054818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of high-affinity peptide ligands for vancomycin.
    Yao N; Wu CY; Xiao W; Lam KS
    Biopolymers; 2008; 90(3):421-32. PubMed ID: 18260149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of Gram-positive bacteria peptidoglycan layer, selected glycopeptide antibiotics and vancomycin derivatives modified with sugar moieties.
    Ślusarz R; Szulc M; Madaj J
    Carbohydr Res; 2014 May; 389():154-64. PubMed ID: 24685455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific serum Ig recognizing staphylococcal wall teichoic acid induces complement-mediated opsonophagocytosis against Staphylococcus aureus.
    Jung DJ; An JH; Kurokawa K; Jung YC; Kim MJ; Aoyagi Y; Matsushita M; Takahashi S; Lee HS; Takahashi K; Lee BL
    J Immunol; 2012 Nov; 189(10):4951-9. PubMed ID: 23071283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.