BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26149397)

  • 21. Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol.
    Hirota S; Ueda M; Hayashi Y; Nagao S; Kamikubo H; Kataoka M
    J Biochem; 2012 Dec; 152(6):521-9. PubMed ID: 22923742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photochemical reduction of cytochrome c by a 1,4,5,8-naphthalenediimide radical anion.
    Campos IB; Nantes IL; Politi MJ; Brochsztain S
    Photochem Photobiol; 2004; 80(3):518-24. PubMed ID: 15623339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stabilization of cytochrome b
    Hu S; He B; Wang XJ; Gao SQ; Wen GB; Lin YW
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():118-123. PubMed ID: 27888781
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior.
    Jiang X; Shang L; Wang Y; Dong S
    Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ruthenium bisbipyridine complexes of horse heart cytochrome c: characterization and comparative intramolecular electron-transfer rates determined by pulse radiolysis and flash photolysis.
    Luo J; Reddy KB; Salameh AS; Wishart JF; Isied SS
    Inorg Chem; 2000 May; 39(11):2321-9. PubMed ID: 12526492
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photoreduction behavior of cytochrome c by zinc porphyrin in lipid media.
    Hitotsumatsu R; Amao Y
    J Photochem Photobiol B; 2005 May; 79(2):89-92. PubMed ID: 15878113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of zinc-substituted cytochrome c: nuclear magnetic resonance and optical spectroscopic studies.
    Anni H; Vanderkooi JM; Mayne L
    Biochemistry; 1995 May; 34(17):5744-53. PubMed ID: 7727435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome c Species in Complexes with Cardiolipin.
    Capdevila DA; Oviedo Rouco S; Tomasina F; Tortora V; Demicheli V; Radi R; Murgida DH
    Biochemistry; 2015 Dec; 54(51):7491-504. PubMed ID: 26620444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ionic strength dependence of cytochrome c structure and Trp-59 H/D exchange from ultraviolet resonance Raman spectroscopy.
    Liu GY; Grygon CA; Spiro TG
    Biochemistry; 1989 Jun; 28(12):5046-50. PubMed ID: 2548599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marked difference in cytochrome c oxidation mediated by HO(*) and/or O(2)(*-) free radicals in vitro.
    Thariat J; Collin F; Marchetti C; Ahmed-Adrar NS; Vitrac H; Jore D; Gardes-Albert M
    Biochimie; 2008 Oct; 90(10):1442-51. PubMed ID: 18555026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.
    Sun MH; Liu SQ; Du KJ; Nie CM; Lin YW
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():130-7. PubMed ID: 24051281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural transformation of cytochrome c and apo cytochrome c induced by sulfonated polystyrene.
    Gong J; Yao P; Duan H; Jiang M; Gu S; Chunyu L
    Biomacromolecules; 2003; 4(5):1293-300. PubMed ID: 12959597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of effects of polyols, salts, and alcohols on trichloroacetic acid-induced state of cytochrome C.
    Naeem A; Ashraf MT; Akram M; Khan RH
    Biochemistry (Mosc); 2006 Oct; 71(10):1101-9. PubMed ID: 17125458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Folding character of cytochrome c studied by o-nitrobenzyl modification of methionine 65 and subsequent ultraviolet light irradiation.
    Okuno T; Hirota S; Yamauchi O
    Biochemistry; 2000 Jun; 39(25):7538-45. PubMed ID: 10858303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells.
    Kapralov AA; Kurnikov IV; Vlasova II; Belikova NA; Tyurin VA; Basova LV; Zhao Q; Tyurina YY; Jiang J; Bayir H; Vladimirov YA; Kagan VE
    Biochemistry; 2007 Dec; 46(49):14232-44. PubMed ID: 18004876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates.
    Lee CH; Lang J; Yen CW; Shih PC; Lin TS; Mou CY
    J Phys Chem B; 2005 Jun; 109(25):12277-86. PubMed ID: 16852515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytochrome c polymerization by successive domain swapping at the C-terminal helix.
    Hirota S; Hattori Y; Nagao S; Taketa M; Komori H; Kamikubo H; Wang Z; Takahashi I; Negi S; Sugiura Y; Kataoka M; Higuchi Y
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):12854-9. PubMed ID: 20615990
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemistry and electron paramagnetic resonance spectroscopy of cytochrome c and its heme-disrupted analogs.
    Novak D; Mojovic M; Pavicevic A; Zatloukalova M; Hernychova L; Bartosik M; Vacek J
    Bioelectrochemistry; 2018 Feb; 119():136-141. PubMed ID: 28992594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrafast Heme Dynamics of Ferric Cytochrome c in Different Environments: Electronic, Vibrational, and Conformational Relaxation.
    Karunakaran V
    Chemphyschem; 2015 Dec; 16(18):3974-83. PubMed ID: 26416435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states.
    Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M
    Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.