BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26150067)

  • 1. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.
    Gérard M; Noamen O; Evelyne G; Eric V; Gilles C; Marc H
    Water Res; 2015 Oct; 83():184-94. PubMed ID: 26150067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of an anti-scale low-frequency electromagnetic field device on drinking water biofilms.
    Gosselin F; Mathieu L; Block JC; Carteret C; Muhr H; Jorand FPA
    Biofouling; 2018 Oct; 34(9):1020-1031. PubMed ID: 30612474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3349-61. PubMed ID: 15276752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of biofilm formation in natural water subjected to low-frequency electromagnetic fields.
    Mercier A; Bertaux J; Lesobre J; Gravouil K; Verdon J; Imbert C; Valette E; Héchard Y
    Biofouling; 2016; 32(3):287-99. PubMed ID: 26905178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biofilm growth protocol and the design of a magnetic field exposure setup to be used in the study of magnetic fields as a means of controlling bacterial biofilms.
    McLeod BR; Sandvik EL
    Bioelectromagnetics; 2010 Jan; 31(1):56-63. PubMed ID: 19630040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.
    Zeng M; Soric A; Roche N
    Bioresour Technol; 2013 Sep; 144():202-9. PubMed ID: 23871921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of microbial activity measurements for monitoring RBC biofilms.
    Coello MD; Rodríguez-Barroso MR; Aragón CA; Quiroga JM
    Environ Monit Assess; 2010 Oct; 169(1-4):451-5. PubMed ID: 19847661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution.
    Liu G; Lut MC; Verberk JQ; Van Dijk JC
    Water Res; 2013 May; 47(8):2719-28. PubMed ID: 23510692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic fields for biofouling mitigation in reclaimed water distribution systems.
    Xiao Y; Seo Y; Lin Y; Li L; Muhammad T; Ma C; Li Y
    Water Res; 2020 Apr; 173():115562. PubMed ID: 32044595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].
    Zhao LY; Song CX; Yu D; Liu XL; Guo JQ; Wang C; Ding YW; Zhou HX; Ma SM; Liu XD; Liu X
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2012 Mar; 30(3):194-5. PubMed ID: 22804887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms.
    Perez-Roa RE; Tompkins DT; Paulose M; Grimes CA; Anderson MA; Noguera DR
    Biofouling; 2006; 22(5-6):383-90. PubMed ID: 17178571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm processes in biologically active carbon water purification.
    Simpson DR
    Water Res; 2008 Jun; 42(12):2839-48. PubMed ID: 18405938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of chronically contaminated biofilms to short pulses of diuron. An experimental study simulating flooding events in a small river.
    Tlili A; Dorigo U; Montuelle B; Margoum C; Carluer N; Gouy V; Bouchez A; Bérard A
    Aquat Toxicol; 2008 May; 87(4):252-63. PubMed ID: 18387680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of biofilms on iron and manganese deposition in drinking water distribution systems.
    Ginige MP; Wylie J; Plumb J
    Biofouling; 2011 Feb; 27(2):151-63. PubMed ID: 21229405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating trends in biofilm density using the UMCCA model.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3362-72. PubMed ID: 15276753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.
    Obermeier A; Matl FD; Friess W; Stemberger A
    Bioelectromagnetics; 2009 May; 30(4):270-9. PubMed ID: 19226539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects.
    Diaz Villanueva V; Font J; Schwartz T; Romani AM
    Biofouling; 2011 Jan; 27(1):59-71. PubMed ID: 21113861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why arguments based on photon energy may be highly misleading for power line frequency electromagnetic fields.
    Vistnes AI; Gjötterud K
    Bioelectromagnetics; 2001 Apr; 22(3):200-4. PubMed ID: 11255216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations.
    Vogt SJ; Sanderlin AB; Seymour JD; Codd SL
    Biotechnol Bioeng; 2013 May; 110(5):1366-75. PubMed ID: 23239390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.