BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26150282)

  • 1. Chemical stabilisation of lead in shooting range soils with phosphate and magnesium oxide: Synchrotron investigation.
    Sanderson P; Naidu R; Bolan N; Lim JE; Ok YS
    J Hazard Mater; 2015 Dec; 299():395-403. PubMed ID: 26150282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of environmental conditions and soil physicochemistry on phosphate stabilisation of Pb in shooting range soils.
    Sanderson P; Naidu R; Bolan N
    J Environ Manage; 2016 Apr; 170():123-30. PubMed ID: 26812009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incomplete transformations of Pb to pyromorphite by phosphate-induced immobilization investigated by X-ray absorption fine structure (XAFS) spectroscopy.
    Hashimoto Y; Takaoka M; Oshita K; Tanida H
    Chemosphere; 2009 Jul; 76(5):616-22. PubMed ID: 19467557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an x-ray absorption fine structure spectroscopy investigation.
    Hashimoto Y; Takaoka M; Shiota K
    J Environ Qual; 2011; 40(3):696-703. PubMed ID: 21546656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments.
    Cao X; Dermatas D; Xu X; Shen G
    Environ Sci Pollut Res Int; 2008 Mar; 15(2):120-7. PubMed ID: 18380230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ formation of pyromorphite is not required for the reduction of in vivo pb relative bioavailability in contaminated soils.
    Juhasz AL; Gancarz D; Herde C; McClure S; Scheckel KG; Smith E
    Environ Sci Technol; 2014 Jun; 48(12):7002-9. PubMed ID: 24823360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc speciation in proximity to phosphate application points in a lead/zinc smelter-contaminated soil.
    Baker LR; Pierzynski GM; Hettiarachchi GM; Scheckel KG; Newville M
    J Environ Qual; 2012; 41(6):1865-73. PubMed ID: 23128743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic speciation and quantification of lead in phosphate-amended soils.
    Scheckel KG; Ryan JA
    J Environ Qual; 2004; 33(4):1288-95. PubMed ID: 15254110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amending soils with phosphate as means to mitigate soil lead hazard: a critical review of the state of the science.
    Scheckel KG; Diamond GL; Burgess MF; Klotzbach JM; Maddaloni M; Miller BW; Partridge CR; Serda SM
    J Toxicol Environ Health B Crit Rev; 2013; 16(6):337-80. PubMed ID: 24151967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecotoxicity of chemically stabilised metal(loid)s in shooting range soils.
    Sanderson P; Naidu R; Bolan N
    Ecotoxicol Environ Saf; 2014 Feb; 100():201-8. PubMed ID: 24287010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weathering of lead bullets and their environmental effects at outdoor shooting ranges.
    Cao X; Ma LQ; Chen M; Hardison DW; Harris WG
    J Environ Qual; 2003; 32(2):526-34. PubMed ID: 12708676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils.
    Sanderson P; Naidu R; Bolan N; Bowman M; McLure S
    Sci Total Environ; 2012 Nov; 438():452-62. PubMed ID: 23026152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials.
    Navarro A; Cardellach E; Corbella M
    J Hazard Mater; 2011 Feb; 186(2-3):1576-85. PubMed ID: 21190796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.
    Debela F; Arocena JM; Thring RW; Whitcombe T
    J Environ Manage; 2013 Feb; 116():156-62. PubMed ID: 23313859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles.
    Liu R; Zhao D
    Water Res; 2007 Jun; 41(12):2491-502. PubMed ID: 17482234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.