These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26150292)

  • 1. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study.
    Tsai JP; Chang LC; Hsu SY; Shan HY
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):26927-26939. PubMed ID: 26150292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description.
    Piri M; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026301. PubMed ID: 15783413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid CO2 displacement of water in a dual-permeability pore network micromodel.
    Zhang C; Oostrom M; Grate JW; Wietsma TW; Warner MG
    Environ Sci Technol; 2011 Sep; 45(17):7581-8. PubMed ID: 21774502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships.
    Ataie-Ashtiani B; Hassanizadeh SM; Celia MA
    J Contam Hydrol; 2002 Jun; 56(3-4):175-92. PubMed ID: 12102317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.
    Lenhard RJ; Oostrom M; Dane JH
    J Contam Hydrol; 2004 Sep; 73(1-4):283-304. PubMed ID: 15614970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.
    Lenhard RJ; Oostrom M; Dane JH
    J Contam Hydrol; 2004 Jul; 71(1-4):261-82. PubMed ID: 15145570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale effects on resistivity index of porous media.
    Aggelopoulos C; Klepetsanis P; Theodoropoulou MA; Pomoni K; Tsakiroglou CD
    J Contam Hydrol; 2005 May; 77(4):299-323. PubMed ID: 15854721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-flowpath model for the interpretation of immiscible displacement experiments in heterogeneous soil columns.
    Aggelopoulos CA; Tsakiroglou CD
    J Contam Hydrol; 2009 Apr; 105(3-4):146-60. PubMed ID: 19178982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macro-scale effective constitutive relationships for two-phase flow processes in heterogeneous porous media with emphasis on the relative permeability-saturation relationship.
    Braun C; Helmig R; Manthey S
    J Contam Hydrol; 2005 Jan; 76(1-2):47-85. PubMed ID: 15588573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New concept to describe three-phase capillary pressure-degree of saturation relationship in porous media.
    Nakamura K; Kikumoto M
    J Contam Hydrol; 2018 Jul; 214():1-15. PubMed ID: 29571541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. More general capillary pressure and relative permeability models from fractal geometry.
    Li K
    J Contam Hydrol; 2010 Jan; 111(1-4):13-24. PubMed ID: 19923036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.
    Moebius F; Or D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023019. PubMed ID: 25215832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments.
    Willingham TW; Werth CJ; Valocchi AJ
    Environ Sci Technol; 2008 May; 42(9):3185-93. PubMed ID: 18522092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multidimensional validation of a numerical model for simulating a DNAPL release in heterogeneous porous media.
    Grant GP; Gerhard JI; Kueper BH
    J Contam Hydrol; 2007 Jun; 92(1-2):109-28. PubMed ID: 17289212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavior of CO
    Jiang L; Yu M; Liu Y; Yang M; Zhang Y; Xue Z; Suekane T; Song Y
    Magn Reson Imaging; 2017 Apr; 37():100-106. PubMed ID: 27836385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media.
    Arshadi M; Gesho M; Qin T; Goual L; Piri M
    J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of nonaqueous phase liquid (NAPL) source zone architecture on mass removal mechanisms in strongly layered heterogeneous porous media during soil vapor extraction.
    Yoon H; Werth CJ; Valocchi AJ; Oostrom M
    J Contam Hydrol; 2008 Aug; 100(1-2):58-71. PubMed ID: 18619707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.