These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26150320)

  • 1. Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations.
    Menzel S; Kaupmann P; Waser R
    Nanoscale; 2015 Aug; 7(29):12673-81. PubMed ID: 26150320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical analysis of the generic SET and RESET characteristics of electrochemical metallization memory cells.
    Menzel S; Waser R
    Nanoscale; 2013 Nov; 5(22):11003-10. PubMed ID: 24065212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switching kinetics of electrochemical metallization memory cells.
    Menzel S; Tappertzhofen S; Waser R; Valov I
    Phys Chem Chem Phys; 2013 May; 15(18):6945-52. PubMed ID: 23549450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices.
    Dirkmann S; Kaiser J; Wenger C; Mussenbrock T
    ACS Appl Mater Interfaces; 2018 May; 10(17):14857-14868. PubMed ID: 29601180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Study on Filament Growth Dynamics in Microstructure-Controlled Storage Media of Resistive Switching Memories.
    Xu P; Fa W; Chen S
    ACS Nano; 2023 Jun; 17(11):10511-10520. PubMed ID: 37235757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices.
    Onofrio N; Guzman D; Strachan A
    Nanoscale; 2016 Aug; 8(29):14037-47. PubMed ID: 27218609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the Conductive Filament Growth Dynamics in Resistive Switching Memory via a Universal Monte Carlo Simulator.
    Li Y; Zhang M; Long S; Teng J; Liu Q; Lv H; Miranda E; Suñé J; Liu M
    Sci Rep; 2017 Sep; 7(1):11204. PubMed ID: 28894146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces.
    Yang CS; Shang DS; Chai YS; Yan LQ; Shen BG; Sun Y
    Phys Chem Chem Phys; 2016 May; 18(18):12466-75. PubMed ID: 26996952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filamentary switching: synaptic plasticity through device volatility.
    La Barbera S; Vuillaume D; Alibart F
    ACS Nano; 2015 Jan; 9(1):941-9. PubMed ID: 25581249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bipolar switching polarity reversal by electrolyte layer sequence in electrochemical metallization cells with dual-layer solid electrolytes.
    Soni R; Meuffels P; Petraru A; Hansen M; Ziegler M; Vavra O; Kohlstedt H; Jeong DS
    Nanoscale; 2013 Dec; 5(24):12598-606. PubMed ID: 24177268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SET kinetics of electrochemical metallization cells: influence of counter-electrodes in SiO
    Lübben M; Menzel S; Park SG; Yang M; Waser R; Valov I
    Nanotechnology; 2017 Mar; 28(13):135205. PubMed ID: 28248653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive filament shape in HfO
    Clarke H; Deremo L; Anderson J; Ganguli S; Shamberger PJ
    Nanotechnology; 2020 Feb; 31(7):075706. PubMed ID: 31751315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells.
    Schindler C; Valov I; Waser R
    Phys Chem Chem Phys; 2009 Jul; 11(28):5974-9. PubMed ID: 19588020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics.
    Yang Y; Gao P; Li L; Pan X; Tappertzhofen S; Choi S; Waser R; Valov I; Lu WD
    Nat Commun; 2014 Jun; 5():4232. PubMed ID: 24953477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching mechanism and reverse engineering of low-power Cu-based resistive switching devices.
    Celano U; Goux L; Opsomer K; Belmonte A; Iapichino M; Detavernier C; Jurczak M; Vandervorst W
    Nanoscale; 2013 Nov; 5(22):11187-92. PubMed ID: 24080868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures.
    Calka P; Martinez E; Delaye V; Lafond D; Audoit G; Mariolle D; Chevalier N; Grampeix H; Cagli C; Jousseaume V; Guedj C
    Nanotechnology; 2013 Mar; 24(8):085706. PubMed ID: 23386039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage equilibration for reactive atomistic simulations of electrochemical processes.
    Onofrio N; Strachan A
    J Chem Phys; 2015 Aug; 143(5):054109. PubMed ID: 26254644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forming and switching mechanisms of a cation-migration-based oxide resistive memory.
    Tsuruoka T; Terabe K; Hasegawa T; Aono M
    Nanotechnology; 2010 Oct; 21(42):425205. PubMed ID: 20864781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical metallization cell with anion supplying active electrode.
    Zhang Z; Wang Y; Luo Y; He Y; Ma M; Yang R; Li H
    Sci Rep; 2018 Aug; 8(1):12617. PubMed ID: 30135453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive filament distribution in nano-scale electrochemical metallization cells.
    Speckbacher M; Rinderle M; Bienek O; Sharp ID; Gagliardi A; Tornow M
    Nanoscale; 2024 Oct; ():. PubMed ID: 39397512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.