BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26150344)

  • 21. Reconstructing the heart using iPSCs: Engineering strategies and applications.
    Cho S; Lee C; Skylar-Scott MA; Heilshorn SC; Wu JC
    J Mol Cell Cardiol; 2021 Aug; 157():56-65. PubMed ID: 33895197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold.
    Gao L; Kupfer ME; Jung JP; Yang L; Zhang P; Da Sie Y; Tran Q; Ajeti V; Freeman BT; Fast VG; Campagnola PJ; Ogle BM; Zhang J
    Circ Res; 2017 Apr; 120(8):1318-1325. PubMed ID: 28069694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiac Tissue Engineering Models of Inherited and Acquired Cardiomyopathies.
    Turnbull IC; Mayourian J; Murphy JF; Stillitano F; Ceholski DK; Costa KD
    Methods Mol Biol; 2018; 1816():145-159. PubMed ID: 29987817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chronic Optogenetic Pacing of Human-Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues.
    Dwenger M; Kowalski WJ; Masumoto H; Nakane T; Keller BB
    Methods Mol Biol; 2021; 2191():151-169. PubMed ID: 32865744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modular design of a tissue engineered pulsatile conduit using human induced pluripotent stem cell-derived cardiomyocytes.
    Park J; Anderson CW; Sewanan LR; Kural MH; Huang Y; Luo J; Gui L; Riaz M; Lopez CA; Ng R; Das SK; Wang J; Niklason L; Campbell SG; Qyang Y
    Acta Biomater; 2020 Jan; 102():220-230. PubMed ID: 31634626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional cardiac tissue engineering.
    Liau B; Zhang D; Bursac N
    Regen Med; 2012 Mar; 7(2):187-206. PubMed ID: 22397609
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pivotal Role of Non-cardiomyocytes in Electromechanical and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissue.
    Iseoka H; Miyagawa S; Fukushima S; Saito A; Masuda S; Yajima S; Ito E; Sougawa N; Takeda M; Harada A; Lee JK; Sawa Y
    Tissue Eng Part A; 2018 Feb; 24(3-4):287-300. PubMed ID: 28498040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering human ventricular heart tissue based on macroporous iron oxide scaffolds.
    Yang H; Wei L; Liu C; Zhong W; Li B; Chen Y; Han R; Zhuang J; Qu J; Tao H; Chen H; Xu C; Liang Q; Lu C; Qian R; Chen S; Wang W; Sun N
    Acta Biomater; 2019 Apr; 88():540-553. PubMed ID: 30779999
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype.
    Ronaldson-Bouchard K; Yeager K; Teles D; Chen T; Ma S; Song L; Morikawa K; Wobma HM; Vasciaveo A; Ruiz EC; Yazawa M; Vunjak-Novakovic G
    Nat Protoc; 2019 Oct; 14(10):2781-2817. PubMed ID: 31492957
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes.
    Li B; Yang H; Wang X; Zhan Y; Sheng W; Cai H; Xin H; Liang Q; Zhou P; Lu C; Qian R; Chen S; Yang P; Zhang J; Shou W; Huang G; Liang P; Sun N
    Stem Cell Res Ther; 2017 Sep; 8(1):202. PubMed ID: 28962583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.
    Tzatzalos E; Abilez OJ; Shukla P; Wu JC
    Adv Drug Deliv Rev; 2016 Jan; 96():234-244. PubMed ID: 26428619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel xeno-free human heart matrix-derived three-dimensional scaffolds.
    Holt-Casper D; Theisen JM; Moreno AP; Warren M; Silva F; Grainger DW; Bull DA; Patel AN
    J Transl Med; 2015 Jun; 13():194. PubMed ID: 26084398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation.
    Hirt MN; Boeddinghaus J; Mitchell A; Schaaf S; Börnchen C; Müller C; Schulz H; Hubner N; Stenzig J; Stoehr A; Neuber C; Eder A; Luther PK; Hansen A; Eschenhagen T
    J Mol Cell Cardiol; 2014 Sep; 74():151-61. PubMed ID: 24852842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes.
    Besser RR; Ishahak M; Mayo V; Carbonero D; Claure I; Agarwal A
    Theranostics; 2018; 8(1):124-140. PubMed ID: 29290797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Protocols for Fabricating a Large Human Cardiac Muscle Patch from Human Induced Pluripotent Stem Cells.
    Gao L; Zhang JJ
    Methods Mol Biol; 2021; 2158():187-197. PubMed ID: 32857374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues.
    Feric NT; Radisic M
    Adv Drug Deliv Rev; 2016 Jan; 96():110-34. PubMed ID: 25956564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel miniaturized multimodal bioreactor for continuous in situ assessment of bioartificial cardiac tissue during stimulation and maturation.
    Kensah G; Gruh I; Viering J; Schumann H; Dahlmann J; Meyer H; Skvorc D; Bär A; Akhyari P; Heisterkamp A; Haverich A; Martin U
    Tissue Eng Part C Methods; 2011 Apr; 17(4):463-73. PubMed ID: 21142417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications.
    Gorain B; Choudhury H; Pandey M; Kesharwani P; Abeer MM; Tekade RK; Hussain Z
    Biomed Pharmacother; 2018 Aug; 104():496-508. PubMed ID: 29800914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration.
    Cao H; Kang BJ; Lee CA; Shung KK; Hsiai TK
    IEEE Rev Biomed Eng; 2015; 8():114-24. PubMed ID: 25974948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium.
    Lu K; Seidel T; Cao-Ehlker X; Dorn T; Batcha AMN; Schneider CM; Semmler M; Volk T; Moretti A; Dendorfer A; Tomasi R
    Theranostics; 2021; 11(13):6138-6153. PubMed ID: 33995650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.