These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 26150344)

  • 61. Electro-mechanical conditioning of human iPSC-derived cardiomyocytes for translational research.
    Kroll K; Chabria M; Wang K; Häusermann F; Schuler F; Polonchuk L
    Prog Biophys Mol Biol; 2017 Nov; 130(Pt B):212-222. PubMed ID: 28688751
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays.
    Amano Y; Nishiguchi A; Matsusaki M; Iseoka H; Miyagawa S; Sawa Y; Seo M; Yamaguchi T; Akashi M
    Acta Biomater; 2016 Mar; 33():110-21. PubMed ID: 26821339
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional comparison of beating cardiomyocytes differentiated from umbilical cord-derived mesenchymal/stromal stem cells and human foreskin-derived induced pluripotent stem cells.
    Pushp P; Sahoo B; Ferreira FC; Sampaio Cabral JM; Fernandes-Platzgummer A; Gupta MK
    J Biomed Mater Res A; 2020 Mar; 108(3):496-514. PubMed ID: 31707752
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Creation of a contractile biomaterial from a decellularized spinach leaf without ECM protein coating: An in vitro study.
    Robbins ER; Pins GD; Laflamme MA; Gaudette GR
    J Biomed Mater Res A; 2020 Oct; 108(10):2123-2132. PubMed ID: 32323417
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue.
    Ruan JL; Tulloch NL; Razumova MV; Saiget M; Muskheli V; Pabon L; Reinecke H; Regnier M; Murry CE
    Circulation; 2016 Nov; 134(20):1557-1567. PubMed ID: 27737958
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Preparation of acellular myocardial scaffolds with well-preserved cardiomyocyte lacunae, and method for applying mechanical and electrical simulation to tissue construct.
    Wang B; Williams LN; de Jongh Curry AL; Liao J
    Methods Mol Biol; 2014; 1181():189-202. PubMed ID: 25070338
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells.
    Giacomelli E; Bellin M; Sala L; van Meer BJ; Tertoolen LG; Orlova VV; Mummery CL
    Development; 2017 Mar; 144(6):1008-1017. PubMed ID: 28279973
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Trichostatin A enhances differentiation of human induced pluripotent stem cells to cardiogenic cells for cardiac tissue engineering.
    Lim SY; Sivakumaran P; Crombie DE; Dusting GJ; Pébay A; Dilley RJ
    Stem Cells Transl Med; 2013 Sep; 2(9):715-25. PubMed ID: 23884641
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bioengineering heart muscle: a paradigm for regenerative medicine.
    Vunjak-Novakovic G; Lui KO; Tandon N; Chien KR
    Annu Rev Biomed Eng; 2011 Aug; 13():245-67. PubMed ID: 21568715
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.
    Eoh JH; Shen N; Burke JA; Hinderer S; Xia Z; Schenke-Layland K; Gerecht S
    Acta Biomater; 2017 Apr; 52():49-59. PubMed ID: 28163239
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells.
    Wanjare M; Hou L; Nakayama KH; Kim JJ; Mezak NP; Abilez OJ; Tzatzalos E; Wu JC; Huang NF
    Biomater Sci; 2017 Jul; 5(8):1567-1578. PubMed ID: 28715029
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modeling Cardiovascular Diseases with hiPSC-Derived Cardiomyocytes in 2D and 3D Cultures.
    Sacchetto C; Vitiello L; de Windt LJ; Rampazzo A; Calore M
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32403456
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 3D Printing Approaches to Engineer Cardiac Tissue.
    Lu TY; Xiang Y; Tang M; Chen S
    Curr Cardiol Rep; 2023 Jun; 25(6):505-514. PubMed ID: 37129759
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling.
    Zhao Y; Rafatian N; Feric NT; Cox BJ; Aschar-Sobbi R; Wang EY; Aggarwal P; Zhang B; Conant G; Ronaldson-Bouchard K; Pahnke A; Protze S; Lee JH; Davenport Huyer L; Jekic D; Wickeler A; Naguib HE; Keller GM; Vunjak-Novakovic G; Broeckel U; Backx PH; Radisic M
    Cell; 2019 Feb; 176(4):913-927.e18. PubMed ID: 30686581
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inotropic assessment in engineered 3D cardiac tissues using human induced pluripotent stem cell-derived cardiomyocytes in the Biowire
    Qu Y; Feric N; Pallotta I; Singh R; Sobbi R; Vargas HM
    J Pharmacol Toxicol Methods; 2020 Sep; 105():106886. PubMed ID: 32629159
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Real-Time Force and Frequency Analysis of Engineered Human Heart Tissue Derived from Induced Pluripotent Stem Cells Using Magnetic Sensing.
    Bielawski KS; Leonard A; Bhandari S; Murry CE; Sniadecki NJ
    Tissue Eng Part C Methods; 2016 Oct; 22(10):932-940. PubMed ID: 27600722
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.
    Tiburcy M; Hudson JE; Balfanz P; Schlick S; Meyer T; Chang Liao ML; Levent E; Raad F; Zeidler S; Wingender E; Riegler J; Wang M; Gold JD; Kehat I; Wettwer E; Ravens U; Dierickx P; van Laake LW; Goumans MJ; Khadjeh S; Toischer K; Hasenfuss G; Couture LA; Unger A; Linke WA; Araki T; Neel B; Keller G; Gepstein L; Wu JC; Zimmermann WH
    Circulation; 2017 May; 135(19):1832-1847. PubMed ID: 28167635
    [TBL] [Abstract][Full Text] [Related]  

  • 78. From cardiac tissue engineering to heart-on-a-chip: beating challenges.
    Zhang YS; Aleman J; Arneri A; Bersini S; Piraino F; Shin SR; Dokmeci MR; Khademhosseini A
    Biomed Mater; 2015 Jun; 10(3):034006. PubMed ID: 26065674
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations.
    Wang B; Wang G; To F; Butler JR; Claude A; McLaughlin RM; Williams LN; de Jongh Curry AL; Liao J
    Langmuir; 2013 Sep; 29(35):11109-17. PubMed ID: 23923967
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility.
    Blazeski A; Zhu R; Hunter DW; Weinberg SH; Zambidis ET; Tung L
    Prog Biophys Mol Biol; 2012; 110(2-3):166-77. PubMed ID: 22971665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.