These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Formation of bimetallic metal-organic framework nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors. Chen C; Wu MK; Tao K; Zhou JJ; Li YL; Han X; Han L Dalton Trans; 2018 Apr; 47(16):5639-5645. PubMed ID: 29619467 [TBL] [Abstract][Full Text] [Related]
23. Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. Zhang L; Cai P; Wei Z; Liu T; Yu J; Al-Ghamdi AA; Wageh S J Colloid Interface Sci; 2021 Apr; 588():637-645. PubMed ID: 33267956 [TBL] [Abstract][Full Text] [Related]
24. Hybrid nanomaterial of α-Co(OH) Cheng JP; Liu L; Ma KY; Wang X; Li QQ; Wu JS; Liu F J Colloid Interface Sci; 2017 Jan; 486():344-350. PubMed ID: 27728828 [TBL] [Abstract][Full Text] [Related]
25. Micelles directed preparation of ternary cobalt hydroxide carbonate-nickel hydroxide-reduced graphene oxide composite porous nanowire arrays with superior faradic capacitance performance. Gao Z; Wang Z; Chang J; Chen L; Wu D; Xu F; Wang X; Jiang K J Colloid Interface Sci; 2019 Jan; 534():563-573. PubMed ID: 30261433 [TBL] [Abstract][Full Text] [Related]
26. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor. Liu Y; Wang R; Yan X Sci Rep; 2015 Jun; 5():11095. PubMed ID: 26053847 [TBL] [Abstract][Full Text] [Related]
27. When Al-Doped Cobalt Sulfide Nanosheets Meet Nickel Nanotube Arrays: A Highly Efficient and Stable Cathode for Asymmetric Supercapacitors. Huang J; Wei J; Xiao Y; Xu Y; Xiao Y; Wang Y; Tan L; Yuan K; Chen Y ACS Nano; 2018 Mar; 12(3):3030-3041. PubMed ID: 29462555 [TBL] [Abstract][Full Text] [Related]
28. A nickel hydroxide-coated 3D porous graphene hollow sphere framework as a high performance electrode material for supercapacitors. Zhang F; Zhu D; Chen X; Xu X; Yang Z; Zou C; Yang K; Huang S Phys Chem Chem Phys; 2014 Mar; 16(9):4186-92. PubMed ID: 24452101 [TBL] [Abstract][Full Text] [Related]
29. Development of high performance alpha-Co(OH) Rong Y; Chen Y; Zheng J; Zhao Y; Li Q J Colloid Interface Sci; 2021 Sep; 598():1-13. PubMed ID: 33887606 [TBL] [Abstract][Full Text] [Related]
30. Supercapacitors Based on Reduced Graphene Oxide Nanofibers Supported Ni(OH)2 Nanoplates with Enhanced Electrochemical Performance. Zhang C; Chen Q; Zhan H ACS Appl Mater Interfaces; 2016 Sep; 8(35):22977-87. PubMed ID: 27488853 [TBL] [Abstract][Full Text] [Related]
31. Oxidative intercalation for monometallic Ni(2+) -Ni(3+) layered double hydroxide and enhanced capacitance in exfoliated nanosheets. Gu F; Cheng X; Wang S; Wang X; Lee PS Small; 2015 May; 11(17):2044-50. PubMed ID: 25504943 [TBL] [Abstract][Full Text] [Related]
32. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor. Ghosh D; Das CK ACS Appl Mater Interfaces; 2015 Jan; 7(2):1122-31. PubMed ID: 25539030 [TBL] [Abstract][Full Text] [Related]
33. Dual-Functional Electrochromic Smart Window Using WO Dutta P; Verma M; Paliwal MS; Mondal I; Ganesha MK; Gupta R; Singh AK; Kulkarni GU ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38048181 [TBL] [Abstract][Full Text] [Related]
34. Facile synthesis of ternary graphene nanocomposites with doped metal oxide and conductive polymers as electrode materials for high performance supercapacitors. Ishaq S; Moussa M; Kanwal F; Ehsan M; Saleem M; Van TN; Losic D Sci Rep; 2019 Apr; 9(1):5974. PubMed ID: 30979913 [TBL] [Abstract][Full Text] [Related]
35. High-Performance Flexible In-Plane Micro-Supercapacitors Based on Vertically Aligned CuSe@Ni(OH) Gong J; Li JC; Yang J; Zhao S; Yang Z; Zhang K; Bao J; Pang H; Han M ACS Appl Mater Interfaces; 2018 Nov; 10(44):38341-38349. PubMed ID: 30335929 [TBL] [Abstract][Full Text] [Related]
36. Direct Reduction of Graphene Oxide by Ni Foam as a High-Capacitance Supercapacitor Electrode. Yang J; Zhang E; Li X; Yu Y; Qu J; Yu ZZ ACS Appl Mater Interfaces; 2016 Jan; 8(3):2297-305. PubMed ID: 26711186 [TBL] [Abstract][Full Text] [Related]
37. Tailoring the morphology followed by the electrochemical performance of NiMn-LDH nanosheet arrays through controlled Co-doping for high-energy and power asymmetric supercapacitors. Singh S; Shinde NM; Xia QX; Gopi CVVM; Yun JM; Mane RS; Kim KH Dalton Trans; 2017 Oct; 46(38):12876-12883. PubMed ID: 28920984 [TBL] [Abstract][Full Text] [Related]
38. Preparation of Supercapacitors on Flexible Substrates with Electrodeposited PEDOT/Graphene Composites. Lehtimäki S; Suominen M; Damlin P; Tuukkanen S; Kvarnström C; Lupo D ACS Appl Mater Interfaces; 2015 Oct; 7(40):22137-47. PubMed ID: 26381462 [TBL] [Abstract][Full Text] [Related]
39. Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Le K; Wang Z; Wang F; Wang Q; Shao Q; Murugadoss V; Wu S; Liu W; Liu J; Gao Q; Guo Z Dalton Trans; 2019 Apr; 48(16):5193-5202. PubMed ID: 30896012 [TBL] [Abstract][Full Text] [Related]
40. One-Step In Situ Self-Assembly of Cypress Leaf-Like Cu(OH) Zhai Z; You Y; Ma L; Jiang D; Li F; Yuan H; Zheng M; Shen W Nanoscale Res Lett; 2019 May; 14(1):167. PubMed ID: 31101986 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]