These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
461 related articles for article (PubMed ID: 26150539)
1. Evaluation of the Role of the opgGH Operon in Yersinia pseudotuberculosis and Its Deletion during the Emergence of Yersinia pestis. Quintard K; Dewitte A; Reboul A; Madec E; Bontemps-Gallo S; Dondeyne J; Marceau M; Simonet M; Lacroix JM; Sebbane F Infect Immun; 2015 Sep; 83(9):3638-47. PubMed ID: 26150539 [TBL] [Abstract][Full Text] [Related]
2. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584 [TBL] [Abstract][Full Text] [Related]
3. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. Erickson DL; Jarrett CO; Wren BW; Hinnebusch BJ J Bacteriol; 2006 Feb; 188(3):1113-9. PubMed ID: 16428415 [TBL] [Abstract][Full Text] [Related]
4. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. Derbise A; Pierre F; Merchez M; Pradel E; Laouami S; Ricard I; Sirard JC; Fritz J; Lemaître N; Akinbi H; Boneca IG; Sebbane F J Infect Dis; 2013 May; 207(10):1535-43. PubMed ID: 23402825 [TBL] [Abstract][Full Text] [Related]
5. Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Erickson DL; Waterfield NR; Vadyvaloo V; Long D; Fischer ER; Ffrench-Constant R; Hinnebusch BJ Cell Microbiol; 2007 Nov; 9(11):2658-66. PubMed ID: 17587333 [TBL] [Abstract][Full Text] [Related]
6. Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. Erickson DL; Jarrett CO; Callison JA; Fischer ER; Hinnebusch BJ J Bacteriol; 2008 Dec; 190(24):8163-70. PubMed ID: 18931111 [TBL] [Abstract][Full Text] [Related]
7. Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route. Chouikha I; Hinnebusch BJ Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18709-14. PubMed ID: 25453069 [TBL] [Abstract][Full Text] [Related]
8. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut. Vadyvaloo V; Hinz AK PLoS One; 2015; 10(9):e0137508. PubMed ID: 26348850 [TBL] [Abstract][Full Text] [Related]
9. Differential regulation of the hmsCDE operon in Yersinia pestis and Yersinia pseudotuberculosis by the Rcs phosphorelay system. Guo XP; Ren GX; Zhu H; Mao XJ; Sun YC Sci Rep; 2015 Feb; 5():8412. PubMed ID: 25672461 [TBL] [Abstract][Full Text] [Related]
10. Yersinia pestis versus Yersinia pseudotuberculosis: effects on host macrophages. Bi Y; Wang X; Han Y; Guo Z; Yang R Scand J Immunol; 2012 Dec; 76(6):541-51. PubMed ID: 22882408 [TBL] [Abstract][Full Text] [Related]
11. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Pujol C; Bliska JB Infect Immun; 2003 Oct; 71(10):5892-9. PubMed ID: 14500510 [TBL] [Abstract][Full Text] [Related]
12. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis. Pouillot F; Fayolle C; Carniel E Infect Immun; 2008 Oct; 76(10):4592-9. PubMed ID: 18678673 [TBL] [Abstract][Full Text] [Related]
13. Evolution and virulence contributions of the autotransporter proteins YapJ and YapK of Yersinia pestis CO92 and their homologs in Y. pseudotuberculosis IP32953. Lenz JD; Temple BR; Miller VL Infect Immun; 2012 Oct; 80(10):3693-705. PubMed ID: 22802344 [TBL] [Abstract][Full Text] [Related]
14. Global discovery of small RNAs in Yersinia pseudotuberculosis identifies Yersinia-specific small, noncoding RNAs required for virulence. Koo JT; Alleyne TM; Schiano CA; Jafari N; Lathem WW Proc Natl Acad Sci U S A; 2011 Sep; 108(37):E709-17. PubMed ID: 21876162 [TBL] [Abstract][Full Text] [Related]
15. STRUCTURAL ORGANIZATION OF PORIN GENES (INTACT AND DISRUPTED BY IS 100) BORDERING THE PGM LOCUS OF THE YERSINIA PESTIS AND YERSINIA PSEUDOTUBERCULOSIS STRAINS. Boolgakova EG; Krasnov YM; Sukhonosov IY; Gaeva AV; Anistimova LV; Guseva NP; Novichkova LA; Kutyrev VV Mol Gen Mikrobiol Virusol; 2016 Sep; 34(2):49-57. PubMed ID: 30380206 [TBL] [Abstract][Full Text] [Related]
16. Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Hinchliffe SJ; Isherwood KE; Stabler RA; Prentice MB; Rakin A; Nichols RA; Oyston PC; Hinds J; Titball RW; Wren BW Genome Res; 2003 Sep; 13(9):2018-29. PubMed ID: 12952873 [TBL] [Abstract][Full Text] [Related]
17. A Trimeric Autotransporter Enhances Biofilm Cohesiveness in Yersinia pseudotuberculosis but Not in Yersinia pestis. Calder JT; Christman ND; Hawkins JM; Erickson DL J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32778558 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O:1b. Skurnik M; Peippo A; Ervelä E Mol Microbiol; 2000 Jul; 37(2):316-30. PubMed ID: 10931327 [TBL] [Abstract][Full Text] [Related]
19. Defective innate cell response and lymph node infiltration specify Yersinia pestis infection. Guinet F; Avé P; Jones L; Huerre M; Carniel E PLoS One; 2008 Feb; 3(2):e1688. PubMed ID: 18301765 [TBL] [Abstract][Full Text] [Related]
20. Bubonic plague: a molecular genetic case history of the emergence of an infectious disease. Hinnebusch BJ J Mol Med (Berl); 1997 Sep; 75(9):645-52. PubMed ID: 9351703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]