These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26150780)

  • 1. Decoding covert shifts of attention induced by ambiguous visuospatial cues.
    Trachel RE; Clerc M; Brochier TG
    Front Hum Neurosci; 2015; 9():358. PubMed ID: 26150780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time EEG Feedback on Alpha Power Lateralization Leads to Behavioral Improvements in a Covert Attention Task.
    Schneider C; Pereira M; Tonin L; Millán JDR
    Brain Topogr; 2020 Jan; 33(1):48-59. PubMed ID: 31317285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding the Locus of Covert Visuospatial Attention from EEG Signals.
    Thiery T; Lajnef T; Jerbi K; Arguin M; Aubin M; Jolicoeur P
    PLoS One; 2016; 11(8):e0160304. PubMed ID: 27529476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding covert visual attention based on phase transfer entropy.
    Ahmadi A; Davoudi S; Behroozi M; Daliri MR
    Physiol Behav; 2020 Aug; 222():112932. PubMed ID: 32413533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding the covert shift of spatial attention from electroencephalographic signals permits reliable control of a brain-computer interface.
    Reichert C; Dürschmid S; Bartsch MV; Hopf JM; Heinze HJ; Hinrichs H
    J Neural Eng; 2020 Oct; 17(5):056012. PubMed ID: 32906103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparatory α-band oscillations reflect spatial gating independently of predictions regarding target identity.
    Wildegger T; van Ede F; Woolrich M; Gillebert CR; Nobre AC
    J Neurophysiol; 2017 Mar; 117(3):1385-1394. PubMed ID: 28077669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interaction for online enhancement of visuospatial attention performance.
    Trachel RE; Brochier TG; Clerc M
    J Neural Eng; 2018 Aug; 15(4):046017. PubMed ID: 29667934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection.
    Thut G; Nietzel A; Brandt SA; Pascual-Leone A
    J Neurosci; 2006 Sep; 26(37):9494-502. PubMed ID: 16971533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-computer interfacing using modulations of alpha activity induced by covert shifts of attention.
    Treder MS; Bahramisharif A; Schmidt NM; van Gerven MA; Blankertz B
    J Neuroeng Rehabil; 2011 May; 8():24. PubMed ID: 21672270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prepare for conflict: EEG correlates of the anticipation of target competition during overt and covert shifts of visual attention.
    Kelly SP; Foxe JJ; Newman G; Edelman JA
    Eur J Neurosci; 2010 May; 31(9):1690-700. PubMed ID: 20525082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A parametric fMRI study of overt and covert shifts of visuospatial attention.
    Beauchamp MS; Petit L; Ellmore TM; Ingeholm J; Haxby JV
    Neuroimage; 2001 Aug; 14(2):310-21. PubMed ID: 11467905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Distribution Dynamics across Different Attentional Priority States.
    Pietrelli M; Samaha J; Postle BR
    J Neurosci; 2022 May; 42(19):4026-4041. PubMed ID: 35387871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time decoding of the direction of covert visuospatial attention.
    Andersson P; Ramsey NF; Raemaekers M; Viergever MA; Pluim JP
    J Neural Eng; 2012 Aug; 9(4):045004. PubMed ID: 22831959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Stimulus Features on the Performance of a Gaze-Independent Brain-Computer Interface Based on Covert Spatial Attention Shifts.
    Reichert C; Tellez Ceja IF; Sweeney-Reed CM; Heinze HJ; Hinrichs H; Dürschmid S
    Front Neurosci; 2020; 14():591777. PubMed ID: 33335470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location and features of instructive spatial cues do not influence the time course of covert shifts of visual spatial attention.
    Müller MM
    Biol Psychol; 2008 Mar; 77(3):292-303. PubMed ID: 18083290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of EEG rhythms support distinct visual selection mechanisms in parietal cortex: a simultaneous transcranial magnetic stimulation and EEG study.
    Capotosto P; Spadone S; Tosoni A; Sestieri C; Romani GL; Della Penna S; Corbetta M
    J Neurosci; 2015 Jan; 35(2):721-30. PubMed ID: 25589765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations.
    Samaha J; Sprague TC; Postle BR
    J Cogn Neurosci; 2016 Aug; 28(8):1090-7. PubMed ID: 27003790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.