These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26150802)

  • 1. High rate copper and energy recovery in microbial fuel cells.
    Rodenas Motos P; Ter Heijne A; van der Weijden R; Saakes M; Buisman CJ; Sleutels TH
    Front Microbiol; 2015; 6():527. PubMed ID: 26150802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prototype of a scaled-up microbial fuel cell for copper recovery.
    Rodenas Motos P; Molina G; Ter Heijne A; Sleutels T; Saakes M; Buisman C
    J Chem Technol Biotechnol; 2017 Nov; 92(11):2817-2824. PubMed ID: 29104342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of Metals from Acid Mine Drainage by Bioelectrochemical System Inoculated with a Novel Exoelectrogen,
    Ai C; Hou S; Yan Z; Zheng X; Amanze C; Chai L; Qiu G; Zeng W
    Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31878294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems.
    Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y
    Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content.
    Santoro C; Abad FB; Serov A; Kodali M; Howe KJ; Soavi F; Atanassov P
    Appl Energy; 2017 Dec; 208():25-36. PubMed ID: 29302130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper recovery combined with electricity production in a microbial fuel cell.
    Heijne AT; Liu F; Weijden Rv; Weijma J; Buisman CJ; Hamelers HV
    Environ Sci Technol; 2010 Jun; 44(11):4376-81. PubMed ID: 20462261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.
    Karra U; Huang G; Umaz R; Tenaglier C; Wang L; Li B
    Bioresour Technol; 2013 Sep; 144():477-84. PubMed ID: 23890975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New process for copper migration by bioelectricity generation in soil microbial fuel cells.
    Wang H; Song H; Yu R; Cao X; Fang Z; Li X
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13147-54. PubMed ID: 27005277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas diffusion electrodes improve hydrogen gas mass transfer for a hydrogen oxidizing bioanode.
    Rodenas P; Zhu F; Ter Heijne A; Sleutels T; Saakes M; Buisman C
    J Chem Technol Biotechnol; 2017 Dec; 92(12):2963-2968. PubMed ID: 29200586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor.
    Tao HC; Zhang LJ; Gao ZY; Wu WM
    Bioresour Technol; 2011 Nov; 102(22):10334-9. PubMed ID: 21940162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell.
    Wu Y; Wang L; Jin M; Kong F; Qi H; Nan J
    Bioresour Technol; 2019 Jul; 283():129-137. PubMed ID: 30901585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd(II) removal and hydrogen evolution in bioelectrochemical systems.
    Wang Q; Huang L; Pan Y; Zhou P; Quan X; Logan BE; Chen H
    Bioresour Technol; 2016 Jan; 200():565-71. PubMed ID: 26528907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced removal of copper by electroflocculation and electroreduction in a novel bioelectrochemical system assisted microelectrolysis.
    Wang H; Wang H; Gao C; Liu L
    Bioresour Technol; 2020 Feb; 297():122507. PubMed ID: 31830718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High current generation coupled to caustic production using a lamellar bioelectrochemical system.
    Rabaey K; Bützer S; Brown S; Keller J; Rozendal RA
    Environ Sci Technol; 2010 Jun; 44(11):4315-21. PubMed ID: 20446659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosurfactants and Synthetic Surfactants in Bioelectrochemical Systems: A Mini-Review.
    Pasternak G; Askitosari TD; Rosenbaum MA
    Front Microbiol; 2020; 11():358. PubMed ID: 32231644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of gas and carbon transport in a methanogenic bioelectrochemical system (BES).
    Dykstra CM; Pavlostathis SG
    Biotechnol Bioeng; 2017 May; 114(5):961-969. PubMed ID: 27922181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deposition and separation of W and Mo from aqueous solutions with simultaneous hydrogen production in stacked bioelectrochemical systems (BESs): Impact of heavy metals W(VI)/Mo(VI) molar ratio, initial pH and electrode material.
    Huang L; Li M; Pan Y; Quan X; Yang J; Puma GL
    J Hazard Mater; 2018 Jul; 353():348-359. PubMed ID: 29684887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-Polymer Hybrid Architectures as Novel Anode Platform for Microbial Electrochemical Technologies.
    Baudler A; Langner M; Rohr C; Greiner A; Schröder U
    ChemSusChem; 2017 Jan; 10(1):253-257. PubMed ID: 27545981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.