These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26150802)

  • 21. New applications and performance of bioelectrochemical systems.
    Hamelers HV; Ter Heijne A; Sleutels TH; Jeremiasse AW; Strik DP; Buisman CJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1673-85. PubMed ID: 20024546
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nutrients removal and recovery in bioelectrochemical systems: a review.
    Kelly PT; He Z
    Bioresour Technol; 2014 Feb; 153():351-60. PubMed ID: 24388692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes.
    Nguyen VK; Hong S; Park Y; Jo K; Lee T
    J Biosci Bioeng; 2015 Feb; 119(2):180-7. PubMed ID: 25073684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioelectrochemical treatment and recovery of copper from distillery waste effluents using power and voltage control strategies.
    Kaur A; Boghani HC; Milner EM; Kimber RL; Michie IS; Daalmans R; Dinsdale RM; Guwy AJ; Head IM; Lloyd JR; Yu EH; Sadhukhan J; Premier GC
    J Hazard Mater; 2019 Jun; 371():18-26. PubMed ID: 30844646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial reverse electrodialysis cells for synergistically enhanced power production.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urine in Bioelectrochemical Systems: An Overall Review.
    Santoro C; Garcia MJS; Walter XA; You J; Theodosiou P; Gajda I; Obata O; Winfield J; Greenman J; Ieropoulos I
    ChemElectroChem; 2020 Mar; 7(6):1312-1331. PubMed ID: 32322457
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output.
    Wang X; Li J; Wang Z; Tursun H; Liu R; Gao Y; Li Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20368-20377. PubMed ID: 27449020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].
    Cheng D; Zhu NW; Wu PX; Zou DH; Xing YJ
    Huan Jing Ke Xue; 2014 Apr; 35(4):1391-8. PubMed ID: 24946593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Treatment of Cu(2+)-containing wastewater by microbial fuel cell with excess sludge as anodic substrate].
    Liang M; Tao HC; Li SF; Li W; Zhang LJ; Ni JR
    Huan Jing Ke Xue; 2011 Jan; 32(1):179-85. PubMed ID: 21404684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamically adaptive control system for bioanodes in serially stacked bioelectrochemical systems.
    Andersen SJ; Pikaar I; Freguia S; Lovell BC; Rabaey K; Rozendal RA
    Environ Sci Technol; 2013 May; 47(10):5488-94. PubMed ID: 23593927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose and Applied Voltage Accelerated
    Wang X; Xing D; Mei X; Liu B; Ren N
    Front Microbiol; 2018; 9():580. PubMed ID: 29636747
    [No Abstract]   [Full Text] [Related]  

  • 32. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis.
    Tao HC; Lei T; Shi G; Sun XN; Wei XY; Zhang LJ; Wu WM
    J Hazard Mater; 2014 Jan; 264():1-7. PubMed ID: 24269969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of pH buffer requirement in bioelectrochemical systems.
    Sleutels TH; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Nov; 44(21):8259-63. PubMed ID: 20942476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological denitrification in microbial fuel cells.
    Clauwaert P; Rabaey K; Aelterman P; de Schamphelaire L; Pham TH; Boeckx P; Boon N; Verstraete W
    Environ Sci Technol; 2007 May; 41(9):3354-60. PubMed ID: 17539549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.
    Zhou H; Liu B; Wang Q; Sun J; Xie G; Ren N; Ren ZJ; Xing D
    Biotechnol Biofuels; 2017; 10():238. PubMed ID: 29075322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation.
    Tao HC; Li W; Liang M; Xu N; Ni JR; Wu WM
    Bioresour Technol; 2011 Apr; 102(7):4774-8. PubMed ID: 21320773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrobenzene removal in bioelectrochemical systems.
    Mu Y; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2009 Nov; 43(22):8690-5. PubMed ID: 20028072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stratified chemical and microbial characteristics between anode and cathode after long-term operation of plant microbial fuel cells for remediation of metal contaminated soils.
    Guan CY; Hu A; Yu CP
    Sci Total Environ; 2019 Jun; 670():585-594. PubMed ID: 30909036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast
    Chaijak P; Sukkasem C; Lertworapreecha M; Boonsawang P; Wijasika S; Sato C
    J Microbiol Biotechnol; 2018 Aug; 28(8):1360-1366. PubMed ID: 30021424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system.
    Li C; Cheng S
    Crit Rev Biotechnol; 2019 Dec; 39(8):1015-1030. PubMed ID: 31496297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.