These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26150802)

  • 41. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.
    Tao HC; Liang M; Li W; Zhang LJ; Ni JR; Wu WM
    J Hazard Mater; 2011 May; 189(1-2):186-92. PubMed ID: 21377788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Electrode configuration as a factor affecting electricity generation in air-cathode microbial fuel cell].
    You SJ; Zhao QL; Jiang JQ
    Huan Jing Ke Xue; 2006 Nov; 27(11):2159-63. PubMed ID: 17326419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assembly of coupled redox fuel cells using copper as electron acceptors to generate power and its in-situ retrieval.
    Zhang HM; Xu W; Li G; Liu ZM; Wu ZC; Li BG
    Sci Rep; 2016 Feb; 6():21059. PubMed ID: 26877144
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode.
    Aryal N; Wan L; Overgaard MH; Stoot AC; Chen Y; Tremblay PL; Zhang T
    Bioelectrochemistry; 2019 Aug; 128():83-93. PubMed ID: 30959398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spontaneous reduction of low-potential silver(I) dithiosulfate complex in bioelectrochemical systems for recovery of silver and simultaneous electricity production.
    Ho NAD; Babel S
    Environ Technol; 2020 Sep; 41(23):3055-3068. PubMed ID: 30896292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anaerobes in Bioelectrochemical Systems.
    Kokko ME; Mäkinen AE; Puhakka JA
    Adv Biochem Eng Biotechnol; 2016; 156():263-292. PubMed ID: 26907547
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Anode and cathode materials characterization for a microbial fuel cell in half cell configuration.
    Pant D; Van Bogaert G; Porto-Carrero C; Diels L; Vanbroekhoven K
    Water Sci Technol; 2011; 63(10):2457-61. PubMed ID: 21977673
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Enhanced Performance of Rolled Membrane Electrode Assembly by Adding Cation Exchange Resin to Anode in Microbial Fuel Cells].
    Mei Z; Zhang Z; Wang X
    Huan Jing Ke Xue; 2015 Nov; 36(11):4311-8. PubMed ID: 26911023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Marine Sediment Mixed With Activated Carbon Allows Electricity Production and Storage From Internal and External Energy Sources: A New Rechargeable Bio-Battery With Bi-Directional Electron Transfer Properties.
    Sudirjo E; Buisman CJN; Strik DPBTB
    Front Microbiol; 2019; 10():934. PubMed ID: 31156566
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extracellular Polymeric Substances from Geobacter sulfurreducens Biofilms in Microbial Fuel Cells.
    Stöckl M; Teubner NC; Holtmann D; Mangold KM; Sand W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8961-8968. PubMed ID: 30730701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of Fe, Ni, and Fe/Ni metallic nanoparticles on power production and biosurfactant production from used vegetable oil in the anode chamber of a microbial fuel cell.
    Liu J; Vipulanandan C
    Waste Manag; 2017 Aug; 66():169-177. PubMed ID: 28404510
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-stratifying microbial fuel cell: The importance of the cathode electrode immersion height.
    Walter XA; Santoro C; Greenman J; Ieropoulos I
    Int J Hydrogen Energy; 2019 Feb; 44(9):4524-4532. PubMed ID: 31007361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Retrieval of Au, Ag, Cu precious metals coupled with electric energy production via an unconventional coupled redox fuel cell reactor.
    Zhang HM; Fan Z; Xu W; Feng X; Wu ZC
    J Hazard Mater; 2017 Sep; 338():194-201. PubMed ID: 28554111
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors.
    Tao HC; Gao ZY; Ding H; Xu N; Wu WM
    Bioresour Technol; 2012 May; 111():92-7. PubMed ID: 22382293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of Ohmic Resistance on Measured Electrode Potentials and Maximum Power Production in Microbial Fuel Cells.
    Logan BE; Zikmund E; Yang W; Rossi R; Kim KY; Saikaly PE; Zhang F
    Environ Sci Technol; 2018 Aug; 52(15):8977-8985. PubMed ID: 29965737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.