These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26150997)

  • 1. Robust optical fiber patch-cords for in vivo optogenetic experiments in rats.
    Trujillo-Pisanty I; Sanio C; Chaudhri N; Shizgal P
    MethodsX; 2015; 2():263-71. PubMed ID: 26150997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A magnetic rotary optical fiber connector for optogenetic experiments in freely moving animals.
    Klorig DC; Godwin DW
    J Neurosci Methods; 2014 Apr; 227():132-9. PubMed ID: 24613796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing.
    Schwaerzle M; Elmlinger P; Paul O; Ruther P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5252-5. PubMed ID: 25571178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator.
    Lee ST; Williams PA; Braine CE; Lin DT; John SW; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):655-64. PubMed ID: 25608307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice.
    Freedman DS; Schroeder JB; Telian GI; Zhang Z; Sunil S; Ritt JT
    J Neural Eng; 2016 Dec; 13(6):066013. PubMed ID: 27762238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies.
    Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P
    Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology.
    Aravanis AM; Wang LP; Zhang F; Meltzer LA; Mogri MZ; Schneider MB; Deisseroth K
    J Neural Eng; 2007 Sep; 4(3):S143-56. PubMed ID: 17873414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity
    Kim WS; Hong S; Park SI
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5742-5746. PubMed ID: 34892424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards fully commercial, UV-compatible fiber patch cords.
    Marciniak CD; Ball HB; Hung AT; Biercuk MJ
    Opt Express; 2017 Jul; 25(14):15643-15661. PubMed ID: 28789079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Connector for Carbon Fiber Screened Cables with Conductive Springs.
    Kwag DS
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1228-1233. PubMed ID: 30469168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative cognitive-test characterization of reconnectable implantable fiber-optic neurointerfaces for optogenetic neurostimulation.
    Fedotov IV; Ivashkina OI; Pochechuev MS; Roshchina MA; Toropova KA; Fedotov AB; Anokhin KV; Zheltikov AM
    J Biophotonics; 2017 Nov; 10(11):1485-1491. PubMed ID: 28230316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter.
    Laxpati NG; Mahmoudi B; Gutekunst CA; Newman JP; Zeller-Townson R; Gross RE
    Front Neuroeng; 2014; 7():40. PubMed ID: 25404915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light distribution and thermal effects in the rat brain under optogenetic stimulation.
    Gysbrechts B; Wang L; Trong NN; Cabral H; Navratilova Z; Battaglia F; Saeys W; Bartic C
    J Biophotonics; 2016 Jun; 9(6):576-85. PubMed ID: 26192551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodal Functional Neuroimaging by Simultaneous BOLD fMRI and Fiber-Optic Calcium Recordings and Optogenetic Control.
    Albers F; Wachsmuth L; van Alst TM; Faber C
    Mol Imaging Biol; 2018 Apr; 20(2):171-182. PubMed ID: 29027094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidural optogenetics for controlled analgesia.
    Bonin RP; Wang F; Desrochers-Couture M; Ga Secka A; Boulanger ME; Côté DC; De Koninck Y
    Mol Pain; 2016; 12():. PubMed ID: 27030718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying Multichannel Optogenetic System for Epidural Spinal Cord Stimulation in Rats.
    Chang SY; Naganuma K; Kanazawa H; Sekino M; Onodera H; Kuniyoshi Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1440-1443. PubMed ID: 30440663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologically responsive, mechanically adaptive polymer optical fibers for optogenetics.
    Jorfi M; Voirin G; Foster EJ; Weder C
    Opt Lett; 2014 May; 39(10):2872-5. PubMed ID: 24978225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.