These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 26151106)
1. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Salama AH; Shamma RN Int J Pharm; 2015 Aug; 492(1-2):28-39. PubMed ID: 26151106 [TBL] [Abstract][Full Text] [Related]
2. Synergistic encapsulation of the anti-HIV agent efavirenz within mixed poloxamine/poloxamer polymeric micelles. Chiappetta DA; Facorro G; de Celis ER; Sosnik A Nanomedicine; 2011 Oct; 7(5):624-37. PubMed ID: 21371572 [TBL] [Abstract][Full Text] [Related]
3. Optimization, Biopharmaceutical Profile and Therapeutic Efficacy of Pioglitazone-loaded PLGA-PEG Nanospheres as a Novel Strategy for Ocular Inflammatory Disorders. Silva-Abreu M; Calpena AC; Espina M; Silva AM; Gimeno A; Egea MA; García ML Pharm Res; 2018 Jan; 35(1):11. PubMed ID: 29299768 [TBL] [Abstract][Full Text] [Related]
4. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Di Tommaso C; Bourges JL; Valamanesh F; Trubitsyn G; Torriglia A; Jeanny JC; Behar-Cohen F; Gurny R; Möller M Eur J Pharm Biopharm; 2012 Jun; 81(2):257-64. PubMed ID: 22445900 [TBL] [Abstract][Full Text] [Related]
6. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Duan Y; Cai X; Du H; Zhai G Colloids Surf B Biointerfaces; 2015 Apr; 128():322-330. PubMed ID: 25707750 [TBL] [Abstract][Full Text] [Related]
7. Poloxamine-based nanomaterials for drug delivery. Alvarez-Lorenzo C; Rey-Rico A; Sosnik A; Taboada P; Concheiro A Front Biosci (Elite Ed); 2010 Jan; 2(2):424-40. PubMed ID: 20036890 [TBL] [Abstract][Full Text] [Related]
8. Transdermal Lipid Nanocarriers: A Potential Delivery System for Lornoxicam. Dasgupta S; Ray S; Dey S; Pal P; Mazumder B Pharm Nanotechnol; 2017; 5(1):32-43. PubMed ID: 28948909 [TBL] [Abstract][Full Text] [Related]
9. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization. Younes NF; Abdel-Halim SA; Elassasy AI Drug Deliv; 2018 Nov; 25(1):1706-1717. PubMed ID: 30442039 [TBL] [Abstract][Full Text] [Related]
10. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Sun F; Zheng Z; Lan J; Li X; Li M; Song K; Wu X Drug Deliv; 2019 Dec; 26(1):575-585. PubMed ID: 31172843 [TBL] [Abstract][Full Text] [Related]
11. Formulation of Niosomal Gel for Enhanced Transdermal Lornoxicam Delivery: In-Vitro and In-Vivo Evaluation. El-Ridy MS; Yehia SA; Mohsen AM; El-Awdan SA; Darwish AB Curr Drug Deliv; 2018; 15(1):122-133. PubMed ID: 28240177 [TBL] [Abstract][Full Text] [Related]
12. Poly(ethylene glycol)-block-poly(2-methyl-2-benzoxycarbonyl-propylene carbonate) micelles for rapamycin delivery: in vitro characterization and biodistribution. Lu W; Li F; Mahato RI J Pharm Sci; 2011 Jun; 100(6):2418-29. PubMed ID: 21264854 [TBL] [Abstract][Full Text] [Related]
13. Dithiol-PEG-PDLLA micelles: preparation and evaluation as potential topical ocular delivery vehicle. Yang J; Yan J; Zhou Z; Amsden BG Biomacromolecules; 2014 Apr; 15(4):1346-54. PubMed ID: 24611557 [TBL] [Abstract][Full Text] [Related]
14. Micelle carriers based on macrogol 15 hydroxystearate for ocular delivery of terbinafine hydrochloride: In vitro characterization and in vivo permeation. Zhou T; Zhu L; Xia H; He J; Liu S; He S; Wang L; Zhang J Eur J Pharm Sci; 2017 Nov; 109():288-296. PubMed ID: 28823856 [TBL] [Abstract][Full Text] [Related]
15. Imatinib-Loaded Micelles of Hyaluronic Acid Derivatives for Potential Treatment of Neovascular Ocular Diseases. Bongiovì F; Fiorica C; Palumbo FS; Di Prima G; Giammona G; Pitarresi G Mol Pharm; 2018 Nov; 15(11):5031-5045. PubMed ID: 30248267 [TBL] [Abstract][Full Text] [Related]
16. Novel poly(ethylene oxide)-b-poly(propylene oxide) copolymer-glucose conjugate by the microwave-assisted ring opening of a sugar lactone. Glisoni RJ; Sosnik A Macromol Biosci; 2014 Nov; 14(11):1639-51. PubMed ID: 25159124 [TBL] [Abstract][Full Text] [Related]
17. Preparation and pharmacokinetics evaluation of oral self-emulsifying system for poorly water-soluble drug Lornoxicam. Li F; Song S; Guo Y; Zhao Q; Zhang X; Pan W; Yang X Drug Deliv; 2015; 22(4):487-98. PubMed ID: 24524289 [TBL] [Abstract][Full Text] [Related]
18. Development and characterization of stabilized double loaded mPEG-PDLLA micelles for simultaneous delivery of paclitaxel and docetaxel. Ouahab A; Shao C; Shen Y; Tu J Drug Dev Ind Pharm; 2014 Jul; 40(7):860-8. PubMed ID: 23600653 [TBL] [Abstract][Full Text] [Related]
19. Formulation and evaluation of proniosomes containing lornoxicam. Madan JR; Ghuge NP; Dua K Drug Deliv Transl Res; 2016 Oct; 6(5):511-8. PubMed ID: 27255375 [TBL] [Abstract][Full Text] [Related]
20. Ocular biocompatibility of novel Cyclosporin A formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Di Tommaso C; Torriglia A; Furrer P; Behar-Cohen F; Gurny R; Möller M Int J Pharm; 2011 Sep; 416(2):515-24. PubMed ID: 21219997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]